Quantum field theory with ghost pairs
暂无分享,去创建一个
[1] D. Anselmi. Purely Virtual Particles in Quantum Gravity, Inflationary Cosmology and Collider Physics , 2022, Symmetry.
[2] D. Anselmi. Diagrammar of physical and fake particles and spectral optical theorem , 2021, Journal of High Energy Physics.
[3] N. Okada,et al. Confinement and renormalization group equations in string-inspired nonlocal gauge theories , 2021, Physical Review D.
[4] Ilya L. Shapiro,et al. Renormalization group in six-derivative quantum gravity , 2021, Physical Review D.
[5] F. Briscese,et al. Non-unitarity of Minkowskian non-local quantum field theories , 2021, The European Physical Journal C.
[6] Thitipat Sainapha. Gribov Ambiguity. , 2019, 1910.11659.
[7] A. Marino,et al. Fakeons and microcausality: light cones, gravitational waves and the Hubble constant , 2019, Classical and Quantum Gravity.
[8] I. Shapiro,et al. Gauge invariant renormalizability of quantum gravity , 2019, Physical Review D.
[9] D. Anselmi. Fakeons, microcausality and the classical limit of quantum gravity , 2018, Classical and Quantum Gravity.
[10] F. Briscese,et al. Cutkosky rules and perturbative unitarity in Euclidean nonlocal quantum field theories , 2018, Physical Review D.
[11] D. Anselmi. Fakeons and Lee-Wick models , 2018, 1801.00915.
[12] Leslaw Rachwal,et al. Nonlocal quantum gravity: A review , 2017 .
[13] D. Anselmi,et al. Perturbative unitarity of Lee-Wick quantum field theory , 2017, 1703.05563.
[14] D. Anselmi,et al. A new formulation of Lee-Wick quantum field theory , 2017, Journal of High Energy Physics.
[15] L. Modesto. Super-renormalizable or finite Lee–Wick quantum gravity , 2016, 1602.02421.
[16] I. Shapiro,et al. Superrenormalizable quantum gravity with complex ghosts , 2015, 1512.07600.
[17] Jing Ren,et al. QCD analogy for quantum gravity , 2015, 1512.05305.
[18] L. Modesto,et al. Finite quantum gauge theories , 2015, 1506.06227.
[19] L. Modesto,et al. Universally finite gravitational and gauge theories , 2015, 1503.00261.
[20] L. Modesto,et al. Super-renormalizable and finite gravitational theories , 2014, 1407.8036.
[21] G. Calcagni,et al. Nonlocal quantum gravity and M-theory , 2014, 1404.2137.
[22] Leonardo Modesto,et al. Super-renormalizable Quantum Gravity , 2011, 1107.2403.
[23] E. Tomboulis. Superrenormalizable gauge and gravitational theories , 1997, hep-th/9702146.
[24] J. López,et al. Some Remarks on High Derivative Quantum Gravity , 1996, hep-th/9610006.
[25] N. Krasnikov. Nonlocal gauge theories , 1987 .
[26] I. Avramidi. Asymptotic behavior of the quantum theory of gravity with higher derivatives , 1986 .
[27] A. Barvinsky,et al. Asymptotic freedom in higher-derivative quantum gravity , 1985 .
[28] E. Fradkin,et al. Renormalizable asymptotically free quantum theory of gravity , 1982 .
[29] K. Stelle. Renormalization of Higher Derivative Quantum Gravity , 1977 .
[30] M. Veltman,et al. Massive and mass-less Yang-Mills and gravitational fields , 1970 .
[31] R. Cutkosky,et al. A NON-ANALYTIC S-MATRIX. , 1969 .
[32] T. D. Lee,et al. Negative Metric and the Unitarity of the S Matrix , 1969 .
[33] A. Accioly,et al. Propagator, tree-level unitarity and effective nonrelativistic potential for higher-derivative gravity theories in D dimensions , 2002 .
[34] Sergei D. Odintsov,et al. Effective Action in Quantum Gravity , 1992 .
[35] T. D. Lee,et al. FINITE THEORY OF QUANTUM ELECTRODYNAMICS. , 1970 .