Quantum field theory with ghost pairs

[1]  D. Anselmi Purely Virtual Particles in Quantum Gravity, Inflationary Cosmology and Collider Physics , 2022, Symmetry.

[2]  D. Anselmi Diagrammar of physical and fake particles and spectral optical theorem , 2021, Journal of High Energy Physics.

[3]  N. Okada,et al.  Confinement and renormalization group equations in string-inspired nonlocal gauge theories , 2021, Physical Review D.

[4]  Ilya L. Shapiro,et al.  Renormalization group in six-derivative quantum gravity , 2021, Physical Review D.

[5]  F. Briscese,et al.  Non-unitarity of Minkowskian non-local quantum field theories , 2021, The European Physical Journal C.

[6]  Thitipat Sainapha Gribov Ambiguity. , 2019, 1910.11659.

[7]  A. Marino,et al.  Fakeons and microcausality: light cones, gravitational waves and the Hubble constant , 2019, Classical and Quantum Gravity.

[8]  I. Shapiro,et al.  Gauge invariant renormalizability of quantum gravity , 2019, Physical Review D.

[9]  D. Anselmi Fakeons, microcausality and the classical limit of quantum gravity , 2018, Classical and Quantum Gravity.

[10]  F. Briscese,et al.  Cutkosky rules and perturbative unitarity in Euclidean nonlocal quantum field theories , 2018, Physical Review D.

[11]  D. Anselmi Fakeons and Lee-Wick models , 2018, 1801.00915.

[12]  Leslaw Rachwal,et al.  Nonlocal quantum gravity: A review , 2017 .

[13]  D. Anselmi,et al.  Perturbative unitarity of Lee-Wick quantum field theory , 2017, 1703.05563.

[14]  D. Anselmi,et al.  A new formulation of Lee-Wick quantum field theory , 2017, Journal of High Energy Physics.

[15]  L. Modesto Super-renormalizable or finite Lee–Wick quantum gravity , 2016, 1602.02421.

[16]  I. Shapiro,et al.  Superrenormalizable quantum gravity with complex ghosts , 2015, 1512.07600.

[17]  Jing Ren,et al.  QCD analogy for quantum gravity , 2015, 1512.05305.

[18]  L. Modesto,et al.  Finite quantum gauge theories , 2015, 1506.06227.

[19]  L. Modesto,et al.  Universally finite gravitational and gauge theories , 2015, 1503.00261.

[20]  L. Modesto,et al.  Super-renormalizable and finite gravitational theories , 2014, 1407.8036.

[21]  G. Calcagni,et al.  Nonlocal quantum gravity and M-theory , 2014, 1404.2137.

[22]  Leonardo Modesto,et al.  Super-renormalizable Quantum Gravity , 2011, 1107.2403.

[23]  E. Tomboulis Superrenormalizable gauge and gravitational theories , 1997, hep-th/9702146.

[24]  J. López,et al.  Some Remarks on High Derivative Quantum Gravity , 1996, hep-th/9610006.

[25]  N. Krasnikov Nonlocal gauge theories , 1987 .

[26]  I. Avramidi Asymptotic behavior of the quantum theory of gravity with higher derivatives , 1986 .

[27]  A. Barvinsky,et al.  Asymptotic freedom in higher-derivative quantum gravity , 1985 .

[28]  E. Fradkin,et al.  Renormalizable asymptotically free quantum theory of gravity , 1982 .

[29]  K. Stelle Renormalization of Higher Derivative Quantum Gravity , 1977 .

[30]  M. Veltman,et al.  Massive and mass-less Yang-Mills and gravitational fields , 1970 .

[31]  R. Cutkosky,et al.  A NON-ANALYTIC S-MATRIX. , 1969 .

[32]  T. D. Lee,et al.  Negative Metric and the Unitarity of the S Matrix , 1969 .

[33]  A. Accioly,et al.  Propagator, tree-level unitarity and effective nonrelativistic potential for higher-derivative gravity theories in D dimensions , 2002 .

[34]  Sergei D. Odintsov,et al.  Effective Action in Quantum Gravity , 1992 .

[35]  T. D. Lee,et al.  FINITE THEORY OF QUANTUM ELECTRODYNAMICS. , 1970 .