Poisson Coordinates

Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

[1]  M. Kasper graphics , 1991, Illustrating Mathematics.

[2]  Kun Zhou,et al.  BSGP: bulk-synchronous GPU programming , 2008, SIGGRAPH 2008.

[3]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[4]  E. Kamke,et al.  Über das Dirichletsche Prinzip , 1948 .

[5]  Mathieu Desbrun,et al.  Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..

[6]  O. Perron,et al.  Eine neue Behandlung der ersten Randwertaufgabe fürΔu=0 , 1923 .

[7]  Kai Hormann,et al.  Mean value coordinates for arbitrary planar polygons , 2006, TOGS.

[8]  Mark Meyer,et al.  Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.

[9]  Donald Greenspan ON THE NUMERICAL SOLUTION OF DIRICHLET PROBLEMS , 1959 .

[10]  Norbert Wiener,et al.  The Dirichlet Problem , 1924 .

[11]  R. Rustamov Boundary Element Formulation of Harmonic Coordinates , 2007 .

[12]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[13]  Tao Ju,et al.  A general geometric construction of coordinates in a convex simplicial polytope , 2007, Comput. Aided Geom. Des..

[14]  Craig Gotsman,et al.  Variational harmonic maps for space deformation , 2009, ACM Trans. Graph..

[15]  Martin Reimers,et al.  Mean value coordinates in 3D , 2005, Comput. Aided Geom. Des..

[16]  Shmuel Peleg,et al.  Seamless Image Stitching in the Gradient Domain , 2004, ECCV.

[17]  Tao Ju,et al.  A unified, integral construction for coordinates over closed curves , 2007, Comput. Aided Geom. Des..

[18]  Michael Garland,et al.  Harmonic functions for quadrilateral remeshing of arbitrary manifolds , 2005, Comput. Aided Geom. Des..

[19]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[20]  Mark Meyer,et al.  Harmonic Coordinates , 2006 .

[21]  Daniel Cohen-Or,et al.  Green Coordinates , 2008, ACM Trans. Graph..

[22]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[23]  Joe D. Warren,et al.  Barycentric coordinates for convex polytopes , 1996, Adv. Comput. Math..

[24]  Tao Ju,et al.  Mean value coordinates for closed triangular meshes , 2005, ACM Trans. Graph..

[25]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[26]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[27]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[28]  Josiah Manson,et al.  Moving Least Squares Coordinates , 2010, Comput. Graph. Forum.

[29]  Jean-Michel Morel,et al.  An axiomatic approach to image interpolation , 1997, Proceedings of International Conference on Image Processing.

[30]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[31]  Solveig Bruvoll,et al.  Transfinite mean value interpolation in general dimension , 2010, J. Comput. Appl. Math..

[32]  Christopher Dyken,et al.  Transfinite mean value interpolation , 2009, Comput. Aided Geom. Des..

[33]  Ofir Weber,et al.  Controllable conformal maps for shape deformation and interpolation , 2010, ACM Trans. Graph..

[34]  Daniel Cohen-Or,et al.  GPU-assisted positive mean value coordinates for mesh deformations , 2007, Symposium on Geometry Processing.

[35]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[36]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[37]  Josiah Manson,et al.  Positive Gordon-Wixom coordinates , 2011, Comput. Aided Des..

[38]  Norman H. Christ,et al.  Weights of links and plaquettes in a random lattice , 1982 .

[39]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[40]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[41]  Alla Sheffer,et al.  Mesh parameterization: theory and practice Video files associated with this course are available from the citation page , 2007, SIGGRAPH Courses.

[42]  William J. Gordon,et al.  PSEUDO-HARMONIC INTERPOLATION ON CONVEX DOMAINS* , 1974 .

[43]  Alexander G. Belyaev,et al.  On transfinite barycentric coordinates , 2006, SGP '06.