Laguerre Filters: An Introduction

In this tutorial paper we present a generalization of the transversal filter, called Laguerre filter, and study some of its more remarkable properties. This filter is obtained by replacing each delay of the transversal filter by a first order all-pass section, and by applying a first order low-pass filter (with the same pole used in the all-pass sections) to the filter’s input signal. Both the transversal and the lattice forms of the Laguerre filter are discussed. We also deduce the stationarity conditions of the mean-square error of a Laguerre filter (transversal or lattice) with respect to its pole position.

[1]  T. Parks,et al.  Choice of time scale in Laguerre approximations using signal measurements , 1971 .

[2]  S. Thomas Alexander,et al.  Adaptive Signal Processing , 1986, Texts and Monographs in Computer Science.

[3]  M. Schetzen,et al.  Asymptotic optimum Laguerre series , 1971 .

[4]  Journal of the Association for Computing Machinery , 1961, Nature.

[5]  William R. Cluett,et al.  Optimal choice of time-scaling factor for linear system approximations using Laguerre models , 1994, IEEE Trans. Autom. Control..

[6]  Nasir Ahmed,et al.  Optimum Laguerre networks for a class of discrete-time systems , 1991, IEEE Trans. Signal Process..

[7]  Guy Albert Dumont,et al.  Laguerre-based adaptive control of pH in an industrial bleach plant extraction stage , 1990, Autom..

[8]  Jonathan R. Partington,et al.  Approximation of delay systems by fourier-laguerre series , 1991, Autom..

[9]  Albertus C. den Brinker Laguerre-domain adaptive filters , 1994, IEEE Trans. Signal Process..

[10]  G. Dumont,et al.  An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..

[11]  Guy Albert Dumont,et al.  On PID controller tuning using orthonormal series identification , 1988, Autom..

[12]  V. E. Benes,et al.  Statistical Theory of Communication , 1960 .

[13]  T. Oliveira e Silva,et al.  On the determination of the optimal pole position of Laguerre filters , 1995, IEEE Trans. Signal Process..

[14]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[15]  Petre Stoica,et al.  Some properties of the output error method , 1982, Autom..

[16]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[17]  M. Schetzen Power-series equivalence of some functional series with applications , 1970 .

[18]  T. Oliveira e Silva,et al.  On the equivalence between Gamma and Laguerre filters , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[19]  P. R. Bélanger,et al.  Direct performance optimization using Laguerre models , 1993, Autom..

[20]  W. Rudin Real and complex analysis , 1968 .

[21]  G. Clowes,et al.  Choice of the time-scaling factor for linear system approximations using orthonormal Laguerre functions , 1965 .

[22]  N. Young An Introduction to Hilbert Space , 1988 .

[23]  Morris J. Gottlieb Concerning Some Polynomials Orthogonal on a Finite or Enumerable Set of Points , 1938 .

[24]  J. Shynk Adaptive IIR filtering , 1989, IEEE ASSP Magazine.

[25]  P. Khargonekar,et al.  Approximation of infinite-dimensional systems , 1989 .

[26]  W. Kautz Transient synthesis in the time domain , 1954 .

[27]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[28]  Robert M. Gray,et al.  On the asymptotic eigenvalue distribution of Toeplitz matrices , 1972, IEEE Trans. Inf. Theory.

[29]  T. Oliveira e Silva Optimality conditions for Laguerre lattice filters , 1995, IEEE Signal Process. Lett..

[30]  Biagio Turchiano,et al.  Laguerre z-transfer function representation of linear discrete-time systems , 1985 .

[31]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[32]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[33]  Alfredo C. Desages,et al.  On robust stability analysis of a control system using laguerre series , 1992, Autom..

[34]  Paul W. Broome,et al.  Discrete Orthonormal Sequences , 1965, JACM.

[35]  Kenneth Steiglitz,et al.  Rational transform approximation via the Laguerre spectrum , 1965 .

[36]  D. G. Lampard A new method of determining correlation functions of stationary time series , 1954 .

[37]  J. J. King Optimum pole positions for Laguerre-function models , 1969 .

[38]  P. N. Paraskevopoulos,et al.  Digital laguerre filters , 1977 .

[39]  David G. Messerschmitt,et al.  Adaptive Filters: Structures, Algorithms and Applications , 1984 .

[40]  Bo Wahlberg,et al.  Applications of Kautz Models in System Identification , 1993 .

[41]  H. Eggleston,et al.  Approximation to transients by means of Laguerre series , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[42]  Albertus C. den Brinker Calculation of the local cross-correlation function on the basis of the Laguerre transform , 1993, IEEE Trans. Signal Process..

[43]  David G. Messerschmitt,et al.  A class of generalized lattice filters , 1980 .

[44]  Guy A. Dumont,et al.  On Determination of Laguerre Filter Pole through Step or Impulse Response Data , 1993 .

[45]  C. Richard Johnson,et al.  Adaptive IIR filtering: Current results and open issues , 1984, IEEE Trans. Inf. Theory.

[46]  B. Wahlberg System identification using Laguerre models , 1991 .

[47]  P. Vaidyanathan,et al.  A unified structural interpretation of some well-known stability-test procedures for linear systems , 1987, Proceedings of the IEEE.

[48]  T. Kailath,et al.  A state-space approach to adaptive RLS filtering , 1994, IEEE Signal Processing Magazine.

[49]  Optimality conditions for Laguerre lattice filters , 1995, IEEE Signal Processing Letters.

[50]  Tomás Oliveira e Silva,et al.  Optimality conditions for truncated Laguerre networks , 1994, IEEE Trans. Signal Process..

[51]  Pertti M. Mäkilä,et al.  Laguerre series approximation of infinite dimensional systems , 1990, Autom..

[52]  R. C. Gilbert Introduction to Hilbert Space (S. K. Berberian) , 1963 .

[53]  Albertus C. den Brinker Adaptive modified Laguerre filters , 1993, Signal Process..

[54]  S. Gunnarsson,et al.  Some asymptotic results in recursive identification using laguerre models , 1991 .

[55]  Yuk Lee Synthesis of electric networks by means of the Fourier tansforms of Laguerre's functions , 1932 .

[56]  Pertti M. Mäkilä,et al.  Approximation of stable systems by laguerre filters , 1990, Autom..

[57]  Kenneth Steiglitz The Equivalence of Digital and Analog Signal Processing , 1965, Inf. Control..