Laguerre Filters: An Introduction
暂无分享,去创建一个
[1] T. Parks,et al. Choice of time scale in Laguerre approximations using signal measurements , 1971 .
[2] S. Thomas Alexander,et al. Adaptive Signal Processing , 1986, Texts and Monographs in Computer Science.
[3] M. Schetzen,et al. Asymptotic optimum Laguerre series , 1971 .
[4] Journal of the Association for Computing Machinery , 1961, Nature.
[5] William R. Cluett,et al. Optimal choice of time-scaling factor for linear system approximations using Laguerre models , 1994, IEEE Trans. Autom. Control..
[6] Nasir Ahmed,et al. Optimum Laguerre networks for a class of discrete-time systems , 1991, IEEE Trans. Signal Process..
[7] Guy Albert Dumont,et al. Laguerre-based adaptive control of pH in an industrial bleach plant extraction stage , 1990, Autom..
[8] Jonathan R. Partington,et al. Approximation of delay systems by fourier-laguerre series , 1991, Autom..
[9] Albertus C. den Brinker. Laguerre-domain adaptive filters , 1994, IEEE Trans. Signal Process..
[10] G. Dumont,et al. An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..
[11] Guy Albert Dumont,et al. On PID controller tuning using orthonormal series identification , 1988, Autom..
[12] V. E. Benes,et al. Statistical Theory of Communication , 1960 .
[13] T. Oliveira e Silva,et al. On the determination of the optimal pole position of Laguerre filters , 1995, IEEE Trans. Signal Process..
[14] Stephen A. Dyer,et al. Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..
[15] Petre Stoica,et al. Some properties of the output error method , 1982, Autom..
[16] B. Wahlberg. System identification using Kautz models , 1994, IEEE Trans. Autom. Control..
[17] M. Schetzen. Power-series equivalence of some functional series with applications , 1970 .
[18] T. Oliveira e Silva,et al. On the equivalence between Gamma and Laguerre filters , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.
[19] P. R. Bélanger,et al. Direct performance optimization using Laguerre models , 1993, Autom..
[20] W. Rudin. Real and complex analysis , 1968 .
[21] G. Clowes,et al. Choice of the time-scaling factor for linear system approximations using orthonormal Laguerre functions , 1965 .
[22] N. Young. An Introduction to Hilbert Space , 1988 .
[23] Morris J. Gottlieb. Concerning Some Polynomials Orthogonal on a Finite or Enumerable Set of Points , 1938 .
[24] J. Shynk. Adaptive IIR filtering , 1989, IEEE ASSP Magazine.
[25] P. Khargonekar,et al. Approximation of infinite-dimensional systems , 1989 .
[26] W. Kautz. Transient synthesis in the time domain , 1954 .
[27] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[28] Robert M. Gray,et al. On the asymptotic eigenvalue distribution of Toeplitz matrices , 1972, IEEE Trans. Inf. Theory.
[29] T. Oliveira e Silva. Optimality conditions for Laguerre lattice filters , 1995, IEEE Signal Process. Lett..
[30] Biagio Turchiano,et al. Laguerre z-transfer function representation of linear discrete-time systems , 1985 .
[31] U. Grenander,et al. Toeplitz Forms And Their Applications , 1958 .
[32] S. Haykin,et al. Adaptive Filter Theory , 1986 .
[33] Alfredo C. Desages,et al. On robust stability analysis of a control system using laguerre series , 1992, Autom..
[34] Paul W. Broome,et al. Discrete Orthonormal Sequences , 1965, JACM.
[35] Kenneth Steiglitz,et al. Rational transform approximation via the Laguerre spectrum , 1965 .
[36] D. G. Lampard. A new method of determining correlation functions of stationary time series , 1954 .
[37] J. J. King. Optimum pole positions for Laguerre-function models , 1969 .
[38] P. N. Paraskevopoulos,et al. Digital laguerre filters , 1977 .
[39] David G. Messerschmitt,et al. Adaptive Filters: Structures, Algorithms and Applications , 1984 .
[40] Bo Wahlberg,et al. Applications of Kautz Models in System Identification , 1993 .
[41] H. Eggleston,et al. Approximation to transients by means of Laguerre series , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.
[42] Albertus C. den Brinker. Calculation of the local cross-correlation function on the basis of the Laguerre transform , 1993, IEEE Trans. Signal Process..
[43] David G. Messerschmitt,et al. A class of generalized lattice filters , 1980 .
[44] Guy A. Dumont,et al. On Determination of Laguerre Filter Pole through Step or Impulse Response Data , 1993 .
[45] C. Richard Johnson,et al. Adaptive IIR filtering: Current results and open issues , 1984, IEEE Trans. Inf. Theory.
[46] B. Wahlberg. System identification using Laguerre models , 1991 .
[47] P. Vaidyanathan,et al. A unified structural interpretation of some well-known stability-test procedures for linear systems , 1987, Proceedings of the IEEE.
[48] T. Kailath,et al. A state-space approach to adaptive RLS filtering , 1994, IEEE Signal Processing Magazine.
[49] Optimality conditions for Laguerre lattice filters , 1995, IEEE Signal Processing Letters.
[50] Tomás Oliveira e Silva,et al. Optimality conditions for truncated Laguerre networks , 1994, IEEE Trans. Signal Process..
[51] Pertti M. Mäkilä,et al. Laguerre series approximation of infinite dimensional systems , 1990, Autom..
[52] R. C. Gilbert. Introduction to Hilbert Space (S. K. Berberian) , 1963 .
[53] Albertus C. den Brinker. Adaptive modified Laguerre filters , 1993, Signal Process..
[54] S. Gunnarsson,et al. Some asymptotic results in recursive identification using laguerre models , 1991 .
[55] Yuk Lee. Synthesis of electric networks by means of the Fourier tansforms of Laguerre's functions , 1932 .
[56] Pertti M. Mäkilä,et al. Approximation of stable systems by laguerre filters , 1990, Autom..
[57] Kenneth Steiglitz. The Equivalence of Digital and Analog Signal Processing , 1965, Inf. Control..