Surveying a complex potential energy landscape: Overcoming broken ergodicity using basin-sampling

Abstract A new basin-sampling scheme is introduced to obtain equilibrium thermodynamic properties by combining results from global optimisation and parallel tempering calculations. Regular minimisation is used to obtain a two-dimensional density of states. A model anharmonic form is optimised using a multihistogram approach for potential energy bins corresponding to local minima, connecting the results obtained for low and high temperatures. This procedure provides accurate densities of states and thermodynamic properties for benchmark atomic clusters exhibiting broken ergodicity. It can also be used to calculate the potential energy density of local minima for distinct permutation-inversion isomers and distinct structures.

[1]  Sanford Weisberg,et al.  Computing science and statistics : proceedings of the 30th Symposium on the Interface, Minneapolis, Minnesota, May 13-16, 1998 : dimension reduction, computational complexity and information , 1998 .

[2]  S. Whittington,et al.  Monte carlo study of the interacting self-avoiding walk model in three dimensions , 1996 .

[3]  Srikanth Sastry,et al.  The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids , 2000, Nature.

[4]  D. Wales Energy landscapes of clusters bound by short-ranged potentials. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[6]  R. Berry,et al.  Solid‐Liquid Phase Behavior in Microclusters , 2007 .

[7]  Jonathan P. K. Doye,et al.  An order parameter approach to coexistence in atomic clusters , 1995 .

[8]  Nature of vibrational eigenmodes in topologically disordered solids , 2001, cond-mat/0108336.

[9]  P. Debenedetti,et al.  The distribution of tetravalent network glasses , 1996 .

[10]  Liquid limits: glass transition and liquid-gas spinodal boundaries of metastable liquids. , 2000, Physical review letters.

[11]  D. Wales,et al.  How the range of pair interactions governs features of multidimensional potentials , 1990 .

[12]  B. Berne,et al.  Smart walking: A new method for Boltzmann sampling of protein conformations , 1997 .

[13]  Thermodynamics and equilibrium structure of Ne38 cluster: quantum mechanics versus classical. , 2005, The Journal of chemical physics.

[14]  A. Heuer,et al.  Why is the density of inherent structures of a Lennard-Jones-type system Gaussian? , 2000 .

[15]  Potential energy landscape of a model glass former: thermodynamics, anharmonicities, and finite size effects. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[17]  H. Stanley,et al.  Thermodynamic and structural aspects of the potential energy surface of simulated water. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  R. Franzosi,et al.  Theorem on the origin of phase transitions. , 2003, Physical Review Letters.

[19]  A. Voter,et al.  Smart Darting Monte Carlo , 2001 .

[20]  Paul G. Mezey,et al.  Catchment region partitioning of energy hypersurfaces, I , 1981 .

[21]  Watanabe,et al.  Direct dynamical calculation of entropy and free energy by adiabatic switching. , 1990, Physical review letters.

[22]  F. Sciortino,et al.  Thermodynamics of supercooled liquids in the inherent-structure formalism: a case study , 2000 .

[23]  J. Doye,et al.  Evolution of the Potential Energy Surface with Size for Lennard-Jones Clusters , 1999, cond-mat/9903305.

[24]  J. Doye,et al.  Energy landscapes of colloidal clusters: thermodynamics and rearrangement mechanisms. , 2012, Nanoscale.

[25]  Vladimir A Mandelshtam,et al.  Low-temperature structural transitions: circumventing the broken-ergodicity problem. , 2007, Physical review letters.

[26]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[27]  Janet E. Jones,et al.  On the Calculation of Certain Crystal Potential Constants, and on the Cubic Crystal of Least Potential Energy , 1925 .

[28]  P. Bunker,et al.  Molecular symmetry and spectroscopy , 1979 .

[29]  S. Weerasinghe,et al.  Absolute classical densities of states for very anharmonic systems and applications to the evaporation of rare gas clusters , 1993 .

[30]  H. C. Longuet-Higgins The symmetry groups of non-rigid molecules , 1963 .

[31]  Jonathan P. K. Doye,et al.  Stationary points and dynamics in high-dimensional systems , 2003 .

[32]  Sahand Hormoz,et al.  Design principles for self-assembly with short-range interactions , 2011, Proceedings of the National Academy of Sciences.

[33]  David J. Wales,et al.  Quasi-Continuous Interpolation Scheme for Pathways between Distant Configurations. , 2012, Journal of chemical theory and computation.

[34]  J. Doye,et al.  Thermodynamics and the Global Optimization of Lennard-Jones clusters , 1998, cond-mat/9806020.

[35]  Schober,et al.  Low-frequency vibrations in a model glass. , 1996, Physical review. B, Condensed matter.

[36]  Dhagash Mehta,et al.  Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  P. Haarhoff The density of vibrational energy levels of polyatomic molecules , 1964 .

[38]  F. Stillinger,et al.  A Topographic View of Supercooled Liquids and Glass Formation , 1995, Science.

[39]  J. Straub,et al.  Replica exchange statistical temperature molecular dynamics algorithm. , 2012, The journal of physical chemistry. B.

[40]  J. Doye,et al.  THE DOUBLE-FUNNEL ENERGY LANDSCAPE OF THE 38-ATOM LENNARD-JONES CLUSTER , 1998, cond-mat/9808265.

[41]  R. Stephen Berry,et al.  The onset of nonrigid dynamics and the melting transition in Ar7 , 1986 .

[42]  Jonathan P. K. Doye,et al.  Characterization of anharmonicities on complex potential energy surfaces: Perturbation theory and simulation , 2001 .

[43]  J. Doye,et al.  Dynamics and thermodynamics of supercooled liquids and glasses from a model energy landscape , 2001 .

[44]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[45]  F. Calvo,et al.  Configurational density of states from molecular dynamics simulations , 1995 .

[46]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[47]  Eberhard R. Hilf,et al.  The structure of small clusters: Multiple normal-modes model , 1993 .

[48]  M. Hoare Structure and Dynamics of Simple Microclusters , 2007 .

[49]  M. Brenner,et al.  The Free-Energy Landscape of Clusters of Attractive Hard Spheres , 2010, Science.

[50]  J. Straub,et al.  Statistical-temperature Monte Carlo and molecular dynamics algorithms. , 2006, Physical review letters.

[51]  D. Mehta,et al.  Energy-landscape analysis of the two-dimensional nearest-neighbor φ⁴ model. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  David Jackson McGinty,et al.  Vapor phase homogeneous nucleation and the thermodynamic properties of small clusters of argon atoms , 1971 .

[53]  D. Wales,et al.  Equilibrium density of states and thermodynamic properties of a model glass former. , 2007, The Journal of chemical physics.

[54]  Y. Sugita,et al.  Multidimensional replica-exchange method for free-energy calculations , 2000, cond-mat/0009120.

[55]  Vladimir A Mandelshtam,et al.  Self-consistent phonons revisited. I. The role of thermal versus quantum fluctuations on structural transitions in large Lennard-Jones clusters. , 2012, The Journal of chemical physics.

[56]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[57]  J. J. Burton Vibrational Frequencies and Entropies of Small Clusters of Atoms , 1972 .

[58]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[59]  R. Whetten,et al.  Statistical thermodynamics of the cluster solid-liquid transition. , 1990, Physical review letters.

[60]  J. Pablo,et al.  Density of states of a binary Lennard-Jones glass , 2003, cond-mat/0305666.

[61]  J. Doye,et al.  The Structure and Stability of Atomic Liquids: From Clusters to Bulk , 1996, Science.

[62]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[63]  G. Parisi,et al.  Lennard-Jones binary mixture: A thermodynamical approach to glass transition , 2000 .

[64]  Jonathan P. K. Doye,et al.  Calculation of thermodynamic properties of small Lennard‐Jones clusters incorporating anharmonicity , 1995 .

[65]  J. Straub,et al.  Communication: Iteration-free, weighted histogram analysis method in terms of intensive variables. , 2011, The Journal of chemical physics.

[66]  D. L. Freeman,et al.  Phase changes in 38-atom Lennard-Jones clusters. II. A parallel tempering study of equilibrium and dynamic properties in the molecular dynamics and microcanonical ensembles , 2000, physics/0003072.

[67]  P. Frantsuzov,et al.  Size-temperature phase diagram for small Lennard-Jones clusters. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  Jonathan P. K. Doye,et al.  TOPICAL REVIEW: The effect of the range of the potential on the structure and stability of simple liquids: from clusters to bulk, from sodium to ? , 1996 .

[69]  Vladimir A Mandelshtam,et al.  Structural transitions and melting in LJ(74-78) Lennard-Jones clusters from adaptive exchange Monte Carlo simulations. , 2006, The journal of physical chemistry. A.

[70]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[71]  David J. Wales,et al.  Symmetry, near-symmetry and energetics , 1998 .

[72]  Juan J de Pablo,et al.  Density-of-states Monte Carlo simulation of a binary glass. , 2004, Physical review letters.

[73]  U H Hansmann,et al.  New Monte Carlo algorithms for protein folding. , 1999, Current opinion in structural biology.

[74]  K. Jordan,et al.  On the convergence of parallel tempering Monte Carlo simulations of LJ38. , 2005, The journal of physical chemistry. A.

[75]  F. Stillinger,et al.  Distinguishing Vibrational and Structural Equilibration Contributions to Thermal Expansion , 1999 .

[76]  Vladimir A Mandelshtam,et al.  Solid-solid structural transformations in Lennard-Jones clusters: accurate simulations versus the harmonic superposition approximation. , 2007, The journal of physical chemistry. A.

[77]  David J. Wales,et al.  Coexistence in small inert gas clusters , 1993 .

[78]  David J. Wales,et al.  Free energy surfaces from an extended harmonic superposition approach and kinetics for alanine dipeptide , 2008 .

[79]  Daan Frenkel,et al.  COMPUTER-SIMULATION STUDY OF FREE-ENERGY BARRIERS IN CRYSTAL NUCLEATION , 1992 .

[80]  J. Doye,et al.  Structural consequences of the range of the interatomic potential A menagerie of clusters , 1997, cond-mat/9709201.

[81]  David J Wales,et al.  Potential energy and free energy landscapes. , 2006, The journal of physical chemistry. B.

[82]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[83]  Unattainability of a purely topological criterion for the existence of a phase transition for nonconfining potentials. , 2004, Physical review letters.

[84]  D. Wales A Microscopic Basis for the Global Appearance of Energy Landscapes , 2001, Science.

[85]  F. Stillinger,et al.  Packing Structures and Transitions in Liquids and Solids , 1984, Science.

[86]  Taming the rugged landscape: production, reordering, and stabilization of selected cluster inherent structures in the X13-nYn system. , 2004, The Journal of chemical physics.

[87]  David J. Wales,et al.  Some further applications of discrete path sampling to cluster isomerization , 2004 .

[88]  D. L. Freeman,et al.  Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering study in the canonical ensemble , 2000, physics/0003068.

[89]  David J Wales,et al.  Equilibrium thermodynamics from basin-sampling. , 2006, The Journal of chemical physics.

[90]  E. Curotto Isomerizations and relative kinetic stability of LJn clusters in a carrier gas , 2001 .

[91]  D. Frenkel,et al.  Colloidal self-assembly: designed to yield. , 2011, Nature materials.

[92]  F. Sciortino,et al.  Inherent Structure Entropy of Supercooled Liquids , 1999, cond-mat/9906081.

[93]  Dhagash Mehta,et al.  Phase transitions detached from stationary points of the energy landscape. , 2011, Physical review letters.

[94]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[95]  U. Hansmann Parallel tempering algorithm for conformational studies of biological molecules , 1997, physics/9710041.

[96]  J. Doye,et al.  The effect of the range of the potential on the structures of clusters , 1995 .