Effective homology of filtered digital images

Abstract In this paper, three Computational Topology methods (namely effective homology, persistent homology and discrete vector fields) are mixed together to produce algorithms for homological digital image processing. The algorithms have been implemented as extensions of the Kenzo system and have shown a good performance when applied on some actual images extracted from a public dataset.

[1]  Rocío González-Díaz,et al.  C V ] 2 3 M ay 2 01 1 On the Cohomology of 3 D Digital Images , 2013 .

[2]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition , 2005, Springer Professional Computing.

[3]  Ana Romero,et al.  Homotopy groups of suspended classifying spaces: An experimental approach , 2013, Math. Comput..

[4]  Pierre Castéran,et al.  Interactive Theorem Proving and Program Development , 2004, Texts in Theoretical Computer Science An EATCS Series.

[5]  Jónathan Heras,et al.  A Certified Module to Study Digital Images with the Kenzo System , 2011, EUROCAST.

[6]  Roman Mikhailov,et al.  On homotopy groups of the suspended classifying spaces , 2009, 0908.3580.

[7]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[8]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[9]  César Domínguez,et al.  A Certified Reduction Strategy for Homological Image Processing , 2014, TOCL.

[10]  Rafael Ayala,et al.  Homotopy in digital spaces , 2003, Discret. Appl. Math..

[11]  Jirí Matousek,et al.  Computing All Maps into a Sphere , 2011, J. ACM.

[12]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[13]  Pawel Dlotko,et al.  Computing fundamental groups from point clouds , 2015, Applicable Algebra in Engineering, Communication and Computing.

[14]  Ana Romero,et al.  Discrete Vector Fields and Fundamental Algebraic Topology , 2010, ArXiv.

[15]  Francis Sergeraert,et al.  The Computability Problem in Algebraic Topology , 1994 .

[16]  Jónathan Heras Mathematical knowledge management in algebraic topology , 2012, ACCA.

[17]  Graham Ellis,et al.  Computational homotopy of finite regular CW-spaces , 2014 .

[18]  Konstantin Mischaikow,et al.  Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..

[19]  Rocío González-Díaz,et al.  Cup Products on Polyhedral Approximations of 3D Digital Images , 2011, IWCIA.

[20]  Ana Romero,et al.  Zigzag persistent homology for processing neuronal images , 2015, Pattern Recognit. Lett..

[21]  Jónathan Heras,et al.  Defining and computing persistent Z-homology in the general case , 2014, ArXiv.

[22]  R. Forman Morse Theory for Cell Complexes , 1998 .

[23]  Julio Rubio,et al.  Constructive Homological Algebra and Applications , 2012, 1208.3816.