Machine-learning based three-qubit gate for realization of a Toffoli gate with cQED-based transmon systems

We use machine learning techniques to design a 50 ns three-qubit flux-tunable controlled-controlled-phase gate with fidelity of >99.99% for nearest-neighbor coupled transmons in circuit quantum electrodynamics architectures. We explain our gate design procedure where we enforce realistic constraints, and analyze the new gate's robustness under decoherence, distortion, and random noise. Our controlled-controlled-phase gate in combination with two single-qubit gates realizes a Toffoli gate which is widely used in quantum circuits, logic synthesis, quantum error correction, and quantum games.

[1]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[2]  Matthias Christandl,et al.  Mirror inversion of quantum states in linear registers. , 2004, Physical review letters.

[3]  Christiane P. Koch,et al.  Charting the circuit QED design landscape using optimal control theory , 2016, 1606.08825.

[4]  Tommaso Calarco,et al.  Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape , 2015, 1506.04601.

[5]  Luigi Frunzio,et al.  Black-box superconducting circuit quantization. , 2012, Physical review letters.

[6]  M. A. Rol,et al.  A fast, low-leakage, high-fidelity two-qubit gate for a programmable superconducting quantum computer , 2019 .

[7]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[8]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[9]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[10]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[11]  Barry C. Sanders,et al.  Quantum control for high-fidelity multi-qubit gates , 2018, New Journal of Physics.

[12]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[13]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[14]  N. Hatano,et al.  Finding Exponential Product Formulas of Higher Orders , 2005, math-ph/0506007.

[15]  Barbara M. Terhal,et al.  Fast, High-Fidelity Conditional-Phase Gate Exploiting Leakage Interference in Weakly Anharmonic Superconducting Qubits. , 2019, Physical review letters.

[16]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[17]  G. Jaeger,et al.  Disentanglement and decoherence in a pair of qutrits under dephasing noise , 2007, 0709.2703.

[18]  Guowu Yang,et al.  Majority-based reversible logic gates , 2005, Theor. Comput. Sci..

[19]  Quantum Discord for a Qutrit-Qutrit System under Depolarizing and Dephasing Noise , 2013 .

[20]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[21]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[22]  M. Rötteler,et al.  Asymmetric quantum codes: constructions, bounds and performance , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Barry C. Sanders,et al.  Designing High-Fidelity Single-Shot Three-Qubit Gates: A Machine Learning Approach , 2015, ArXiv.

[24]  J. Martinis,et al.  High-fidelity controlled-σ Z gate for resonator-based superconducting quantum computers , 2013, 1301.1719.

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[27]  Igor L. Markov,et al.  On the CNOT-cost of TOFFOLI gates , 2008, Quantum Inf. Comput..

[28]  Pérès,et al.  Reversible logic and quantum computers. , 1985, Physical review. A, General physics.

[29]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[30]  Frederick W Strauch,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[31]  A. Kossakowski,et al.  On quantum statistical mechanics of non-Hamiltonian systems , 1972 .

[32]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[33]  李幼升,et al.  Ph , 1989 .

[34]  F. Wellstood,et al.  Implementation of a generalized controlled-NOT gate between fixed-frequency transmons , 2018, Physical Review A.

[35]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[36]  Austin G. Fowler,et al.  Surface code with decoherence: An analysis of three superconducting architectures , 2012, 1210.5799.

[37]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[38]  Barry C Sanders,et al.  High-Fidelity Single-Shot Toffoli Gate via Quantum Control. , 2015, Physical review letters.

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  Sergio Boixo,et al.  Introduction to Quantum Algorithms for Physics and Chemistry , 2012, 1203.1331.

[41]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[42]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.

[43]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[44]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[45]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[46]  Yu-Bo Sheng,et al.  Distributed secure quantum machine learning. , 2017, Science bulletin.

[47]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[48]  Nicholas T. Bronn,et al.  Tunable Superconducting Qubits with Flux-Independent Coherence , 2017, 1702.02253.

[49]  Joseph Emerson,et al.  Scalable protocol for identification of correctable codes , 2007, 0710.1900.

[50]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[51]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[52]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[53]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[54]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[55]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[56]  Klaus Molmer,et al.  Fidelity of quantum operations , 2007 .

[57]  L. DiCarlo,et al.  Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.