Optimization of IPM motors with Machaon rotor flux barriers

The interior permanent magnet (IPM) motor is normally designed with two or more flux barriers per pole. The form of such flux barriers has a direct impact on the torque developed by the IPM motor, including both average value and ripple. The Machaon structure is formed by flux barriers of different shape, greatly reducing the torque ripple. Their shape must be optimized based on the number of poles, slots, winding arrangements, and PM volume. At this aim a stochastic optimizer is applied in order to find the best shape of the flux barriers with the twofold objective of achieving a smooth with a high average value.

[1]  A. Fratta,et al.  Evaluation of torque ripple in high performance synchronous reluctance machines , 1993, Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting.

[2]  G. Franceschini,et al.  Design of low-torque-ripple synchronous reluctance motors , 1997, IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting.

[3]  N. Bianchi,et al.  Rotor Flux-Barrier Design for Torque Ripple Reduction in Synchronous Reluctance and PM-Assisted Synchronous Reluctance Motors , 2009, IEEE Transactions on Industry Applications.

[4]  L. Dos Santos Coelho,et al.  Tribes Optimization Algorithm Applied to the Loney's Solenoid , 2009, IEEE Transactions on Magnetics.