Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 single crystals

High-resolution studies of polar structures have been performed on the 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (0.9PMN-0.1PT) single crystals by piezoresponse force microscopy. A complex pattern of nanosized polar regions (nanodomains) was observed above the temperature of the structural phase transition. Autocorrelation function technique applied to the analysis of the obtained images revealed clear self-organization of the nanodomains in (110) crystallographic directions and allowed estimating their mean size (∼70 nm at room temperature). Upon heating, the gradual decay of the piezoresponse contrast took place, however, the nanodomains could be still observed at temperatures as high as 385 K. The nature of the observed phenomena is attributed to a peculiar transient state between relaxor and ferroelectric, which developed near the crystal’s surface.

[1]  G. Shirane,et al.  Development of ferroelectric order in relaxor (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (0≤x≤0.15) , 2002, cond-mat/0208058.

[2]  O. Noblanc,et al.  Structural and dielectric studies of Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric solid solutions around the morphotropic boundary , 1996 .

[3]  Sirota,et al.  X-ray and neutron scattering from rough surfaces. , 1988, Physical review. B, Condensed matter.

[4]  R. Pirc,et al.  Local Polarization Distribution and Edwards-Anderson Order Parameter of Relaxor Ferroelectrics , 1999 .

[5]  V. Shvartsman,et al.  Domain structure of0.8Pb(Mg1/3Nb2/3)O3−0.2PbTiO3studied by piezoresponse force microscopy , 2004 .

[6]  G. Shirane,et al.  Evidence of decoupled lattice distortion and ferroelectric polarization in the relaxor system PMN-xPT , 2003, cond-mat/0307144.

[7]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[8]  J. H. Fox,et al.  Direct observation of the near-surface layer inPb(Mg1∕3Nb2∕3)O3using neutron diffraction , 2004, cond-mat/0407609.

[9]  Xiaowen Zhang,et al.  Electron diffraction and HREM study of a short-range ordered structure in the relaxor ferroelectric P b ( M g 1 / 3 Nb 2 / 3 ) O 3 , 2001 .

[10]  A. Kholkin,et al.  Structure of Nanodomains in Relaxors , 2003 .

[11]  J. Lisoni,et al.  Surface roughness and surface-induced resistivity of gold films on mica: Application of quantitative scanning tunneling microscopy , 2000 .

[12]  A. Lebon,et al.  The cubic-to-rhombohedral phase transition of Pb(Zn1/3Nb2/3)O3: a high-resolution x-ray diffraction study on single crystals , 2002 .

[13]  C. Choy,et al.  Relaxor ferroelectric characteristics and temperature-dependent domain structure in a (110)-cut(PbMg1∕3Nb2∕3O3)0.75(PbTiO3)0.25single crystal , 2005 .

[14]  Z. Ye,et al.  Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystals , 2000 .

[15]  R. Pankrath,et al.  Ferroelectric nanodomains in the uniaxial relaxor system Sr 0.61-x Ba 0.39 Nb 2 O 6 :Ce 3+ x , 2001 .

[16]  V. Shvartsman,et al.  Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics , 2005 .

[17]  G. Shirane,et al.  Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3 , 2002, cond-mat/0203422.

[18]  Rainer Waser,et al.  Polar oxides : properties, characterization, and imaging , 2004 .

[19]  Sergei V. Kalinin,et al.  Review of Ferroelectric Domain Imaging by Piezoresponse Force Microscopy , 2007 .

[20]  M. Glinchuk,et al.  A random field theory based model for ferroelectric relaxors , 1996 .

[21]  Structural phase transition and dielectric relaxation in Pb(Zn1/3Nb2/3)O3 single crystals , 2004, cond-mat/0405042.

[22]  V. Shvartsman,et al.  Evolution of nanodomains in the uniaxial relaxor Sr/sub 0.61/Ba/sub 0.39/Nb/sub 2/O/sub 6/:Ce , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  Yoseph Imry,et al.  Random-Field Instability of the Ordered State of Continuous Symmetry , 1975 .

[24]  Chih‐Long Tsai,et al.  Phases and Domain Structures in Relaxor-Based Ferroelectric (PbMg1/3Nb2/3O3)0.69(PbTiO3)0.31 Single Crystal , 2001 .

[25]  A. Kingon,et al.  Ferroelectric behavior in nominally relaxor lead lanthanum zirconate titanate thin films prepared by chemical solution deposition on copper foil , 2006 .

[26]  A. Bokov Influence of disorder in crystal structure on ferroelectric phase transitions , 1997 .

[27]  A. Tagantsev,et al.  Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films , 1998 .

[28]  N. Setter,et al.  Role of Defects in the Ferroelectric Relaxor Lead Scandium Tantalate , 1995 .

[29]  Brahim Dkhil,et al.  Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and PZN-PT compounds , 2002 .

[30]  F. Bai,et al.  Domain engineered states over various length scales in (001)-oriented Pb(Mg1∕3Nb2∕3)O3-x%PbTiO3 crystals: Electrical history dependence of hierarchal domains , 2005 .

[31]  Yiping Guo,et al.  Domain Configuration and Ferroelectric Related Properties of the (110)cub Cuts of Relaxor-Based Pb(Mg1/3Nb2/3)O3–PbTiO3 Single Crystals , 2002 .

[32]  Sampling-induced hidden cycles in correlated random rough surfaces , 1997 .

[33]  R. Birgeneau,et al.  Ferroelectric ordering in the relaxor Pb(Mg1/3Nb2/3)O3 as evidenced by low-temperature phonon anomalies , 2001, cond-mat/0112366.