A HERSCHEL AND APEX CENSUS OF THE REDDEST SOURCES IN ORION: SEARCHING FOR THE YOUNGEST PROTOSTARS

We perform a census of the reddest, and potentially youngest, protostars in the Orion molecular clouds using data obtained with the PACS instrument on board the Herschel Space Observatory and the LABOCA and SABOCA instruments on APEX as part of the Herschel Orion Protostar Survey (HOPS). A total of 55 new protostar candidates are detected at 70 μm and 160 μm that are either too faint (m24 > 7 mag) to be reliably classified as protostars or undetected in the Spitzer/MIPS 24 μm band. We find that the 11 reddest protostar candidates with log λFλ70/λFλ24 > 1.65 are free of contamination and can thus be reliably explained as protostars. The remaining 44 sources have less extreme 70/24 colors, fainter 70 μm fluxes, and higher levels of contamination. Taking the previously known sample of Spitzer protostars and the new sample together, we find 18 sources that have log λFλ70/λFλ24 > 1.65; we name these sources “PACS Bright Red sources,” or PBRs. Our analysis reveals that the PBR sample is composed of Class 0 like sources characterized by very red spectral energy distributions (SEDs; Tbol < 45 K) and large values of sub-millimeter fluxes (Lsmm/Lbol > 0.6%). Modified blackbody fits to the SEDs provide lower limits to the envelope masses of 0.2–2 M☉ and luminosities of 0.7–10 L☉. Based on these properties, and a comparison of the SEDs with radiative transfer models of protostars, we conclude that the PBRs are most likely extreme Class 0 objects distinguished by higher than typical envelope densities and hence, high mass infall rates.

[1]  K. Wood,et al.  The standard model of low-mass star formation applied to massive stars: a multi-wavelength picture of AFGL 2591 , 2012, 1212.1719.

[2]  E. Bergin,et al.  HERSCHEL/PACS SPECTROSCOPIC SURVEY OF PROTOSTARS IN ORION: THE ORIGIN OF FAR-INFRARED CO EMISSION , 2012, 1211.2234.

[3]  L. Hartmann,et al.  A ∼0.2-solar-mass protostar with a Keplerian disk in the very young L1527 IRS system , 2012, Nature.

[4]  A. Giorgio,et al.  Herschel observations of B1-bS and B1-bN: two first hydrostatic core candidates in the Perseus star-forming cloud , 2012, 1209.5290.

[5]  O. Krause,et al.  The Earliest Phases of Star formation (EPoS) observed with Herschel: the dust temperature and density distributions of B68 , 2012, 1208.4512.

[6]  O. Krause,et al.  The Earliest Phases of Star Formation (EPoS): a Herschel key program - The precursors to high-mass stars and clusters , 2012, 1207.6518.

[7]  T. Henning,et al.  MULTIWAVELENGTH OBSERVATIONS OF V2775 Ori, AN OUTBURSTING PROTOSTAR IN L 1641: EXPLORING THE EDGE OF THE FU ORIONIS REGIME , 2012, 1207.2466.

[8]  T. Henning,et al.  Synthetic observations of first hydrostatic cores in collapsing low-mass dense cores. I. Spectral energy distributions and evolutionary sequence , 2012, 1207.0656.

[9]  Charles E. Hansen,et al.  OBSERVING SIMULATED PROTOSTARS WITH OUTFLOWS: HOW ACCURATE ARE PROTOSTELLAR PROPERTIES INFERRED FROM SEDs? , 2012, 1205.0246.

[10]  L. Allen,et al.  THE LOW-MASS STELLAR POPULATION IN L1641: EVIDENCE FOR ENVIRONMENTAL DEPENDENCE OF THE STELLAR INITIAL MASS FUNCTION , 2012, 1204.3704.

[11]  L. Allen,et al.  LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS , 2012, 1204.1535.

[12]  Daniel J. Price,et al.  Collimated jets from the first core , 2012, 1203.2933.

[13]  K. Stassun,et al.  THE INITIAL MASS FUNCTION OF THE ORION NEBULA CLUSTER ACROSS THE H-BURNING LIMIT , 2011, 1112.2711.

[14]  M. Juvela,et al.  A (sub)millimetre study of dense cores in Orion B9 , 2011, 1112.5053.

[15]  Thomas P. Robitaille,et al.  HYPERION: an open-source parallelized three-dimensional dust continuum radiative transfer code , 2011, 1112.1071.

[16]  J. Foster,et al.  THE ENIGMATIC CORE L1451-mm: A FIRST HYDROSTATIC CORE? OR A HIDDEN VeLLO? , 2011, 1109.1207.

[17]  N. D. Rio,et al.  Quantitative evidence of an intrinsic luminosity spread in the Orion nebula cluster , 2011, 1108.1015.

[18]  K. Sandstrom,et al.  Common-Resolution Convolution Kernels for Space- and Ground-Based Telescopes , 2011, 1106.5065.

[19]  C. Dominik,et al.  UvA-DARE ( Digital Academic Repository ) Dust coagulation and fragmentation in molecular clouds : II . The opacity of the dust aggregate size distribution , 2011 .

[20]  C. McKee,et al.  THE PROTOSTELLAR LUMINOSITY FUNCTION , 2011, 1105.0671.

[21]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[22]  M. Juvela,et al.  Physical properties of dense cores in Orion B9 , 2010, 1009.1275.

[23]  M. Dunham,et al.  A CANDIDATE DETECTION OF THE FIRST HYDROSTATIC CORE , 2010, 1009.0536.

[24]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[25]  M. Sauvage,et al.  Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel , 2010, 1005.3115.

[26]  M. Sauvage,et al.  The Aquila prestellar core population revealed by Herschel , 2010, 1005.2981.

[27]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[28]  L. Allen,et al.  Predicted colors and flux densities of protostars in the Herschel PACS and SPIRE filters , 2010, 1005.2404.

[29]  W. Fischer,et al.  Hier ist wahrhaftig ein Loch im Himmel - The NGC 1999 dark globule is not a globule , 2010, 1005.2202.

[30]  O. Krause,et al.  Herschel-PACS imaging of protostars in the HH 1–2 outflow complex , 2010, 1005.2183.

[31]  O. Krause,et al.  Dust-temperature of an isolated star-forming cloud: Herschel observations of the Bok globule CB244 , 2010, 1005.1943.

[32]  Qizhou Zhang,et al.  L1448 IRS2E: A CANDIDATE FIRST HYDROSTATIC CORE , 2010, 1004.2443.

[33]  S. Wolf,et al.  LOOKING INTO THE HEARTS OF BOK GLOBULES: MILLIMETER AND SUBMILLIMETER CONTINUUM IMAGES OF ISOLATED STAR-FORMING CORES , 2010, 1004.0869.

[34]  D. Padgett,et al.  THE MASS DISTRIBUTION OF STARLESS AND PROTOSTELLAR CORES IN GOULD BELT CLOUDS , 2010, 1001.0978.

[35]  D. Wilner,et al.  PROSAC: a submillimeter array survey of low-mass protostars - II. The mass evolution of envelopes, disks, and stars from the class 0 through I stages , 2009, 0909.3386.

[36]  T. Henning,et al.  Star and Protoplanetary Disk Properties in Orion's Suburbs , 2009, 0907.2380.

[37]  G. Fazio,et al.  A SPITZER SURVEY OF YOUNG STELLAR CLUSTERS WITHIN ONE KILOPARSEC OF THE SUN: CLUSTER CORE EXTRACTION AND BASIC STRUCTURAL ANALYSIS , 2009, 0906.0201.

[38]  J. Kainulainen,et al.  Prestellar and protostellar cores in Orion B9 , 2009, 0903.5144.

[39]  J. Bally,et al.  OUTFLOWS AND YOUNG STARS IN ORION'S LARGE COMETARY CLOUDS L1622 AND L1634 , 2009 .

[40]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[41]  N. Evans,et al.  PROPERTIES OF THE YOUNGEST PROTOSTARS IN PERSEUS, SERPENS, AND OPHIUCHUS , 2008, 0809.4012.

[42]  L. Hartmann,et al.  Accretion Processes in Star Formation: Second Edition , 2009 .

[43]  P. Lucas,et al.  A census of molecular hydrogen outflows and their sources along the Orion A molecular ridge - Characteristics and overall distribution , 2008, 0812.3733.

[44]  R. Indebetouw,et al.  INTRINSICALLY RED SOURCES OBSERVED BY SPITZER IN THE GALACTIC MIDPLANE , 2008, 0809.1654.

[45]  Eugene E. Haller,et al.  The large APEX bolometer camera LABOCA , 2008, Astronomical Telescopes + Instrumentation.

[46]  G. Rieke,et al.  Spitzer and HHT Observations of Bok Globule B335: Isolated Star Formation Efficiency and Cloud Structure , 2008, 0807.2241.

[47]  Elizabeth Ledwosinska,et al.  The SCUBA Legacy Catalogues: Submillimeter-Continuum Objects Detected by SCUBA , 2008, 0801.2595.

[48]  K. Flaherty,et al.  EVIDENCE FOR EARLY CIRCUMSTELLAR DISK EVOLUTION IN NGC 2068/71 , 2007, 0712.1601.

[49]  R. A. Gutermuth,et al.  Spitzer Observations of NGC 1333: A Study of Structure and Evolution in a Nearby Embedded Cluster , 2007, 0710.1860.

[50]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[51]  M. Dunham,et al.  Identifying the Low-Luminosity Population of Embedded Protostars in the c2d Observations of Clouds and Cores , 2007, 0806.1754.

[52]  Ithaca,et al.  Spitzer IRS Spectra and Envelope Models of Class I Protostars in Taurus , 2007, 0711.4038.

[53]  K. Menten,et al.  The distance to the Orion Nebula , 2007, 0709.0485.

[54]  G. Fazio,et al.  A Combined Spitzer and Chandra Survey of Young Stellar Objects in the Serpens Cloud Core , 2007, 0707.2537.

[55]  J. Peek,et al.  A Parallactic Distance of 389-21+24 Parsecs to the Orion Nebula Cluster from Very Long Baseline Array Observations , 2007, 0706.2361.

[56]  S. Sakai,et al.  Distance to Orion KL Measured with VERA , 2007, 0705.3792.

[57]  B. Merín,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. IX. The Serpens YSO Population as Observed with IRAC and MIPS , 2007, 0704.0009.

[58]  K. Flaherty,et al.  Infrared Extinction toward Nearby Star-forming Regions , 2007, astro-ph/0703777.

[59]  L. Mundy,et al.  Imaging Scattered Light from the Youngest Protostars in L1448: Signatures of Outflows , 2007, astro-ph/0701355.

[60]  D. Ward-Thompson,et al.  A SCUBA survey of Orion -the low-mass end of the core mass function , 2006, astro-ph/0611164.

[61]  D. Johnstone,et al.  Current Star Formation in the Perseus Molecular Cloud: Constraints from Unbiased Submillimeter and Mid-Infrared Surveys , 2006, astro-ph/0610381.

[62]  G. Fuller,et al.  Star formation in Perseus: II. SEDs, classification and lifetimes , 2006, astro-ph/0612601.

[63]  M. Dunham,et al.  The Spitzer c2d Survey of Nearby Dense Cores. II. Discovery of a Low-Luminosity Object in the “Evolved Starless Core” L1521F , 2006, astro-ph/0608148.

[64]  C. Dullemond,et al.  The Spitzer c2d Survey of Nearby Dense Cores. I. First Direct Detection of the Embedded Source in IRAM 04191+1522 , 2006, astro-ph/0607665.

[65]  A. Sargent,et al.  The Evolution of Outflow-Envelope Interactions in Low-Mass Protostars , 2006, astro-ph/0605139.

[66]  Harvard-Smithsonian Center for Astrophysics,et al.  Observations and Modeling of the 2-25 μm Emission from High-Mass Protostellar Object Candidates , 2005 .

[67]  N. Evans,et al.  EVOLUTIONARY SIGNATURES IN THE FORMATION OF LOW-MASS PROTOSTARS. II. TOWARD RECONCILING MODELS AND OBSERVATIONS , 2005, 0912.5229.

[68]  K. Rice,et al.  Protostars and Planets V , 2005 .

[69]  S. Qin,et al.  A study of high velocity molecular outflows with an up-to-date sample , 2004, astro-ph/0410727.

[70]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[71]  Erick T. Young,et al.  Reduction Algorithms for the Multiband Imaging Photometer for Spitzer , 2004, SPIE Astronomical Telescopes + Instrumentation.

[72]  G. Fazio,et al.  Infrared Array Camera (IRAC) Colors of Young Stellar Objects , 2004 .

[73]  D. Padgett,et al.  Is the Cepheus E Outflow Driven by a Class 0 Protostar? , 2004, astro-ph/0506710.

[74]  L. Allen,et al.  Initial Results from the Spitzer Young Stellar Cluster Survey , 2004, astro-ph/0406008.

[75]  K. Wood,et al.  Two-dimensional Radiative Transfer in Protostellar Envelopes. II. An Evolutionary Sequence , 2003, astro-ph/0309007.

[76]  Santiago,et al.  The stellar content of omc 2/3 , 2003, astro-ph/0306461.

[77]  L. T. Little,et al.  Carbon monoxide depletion in Orion B molecular cloud cores , 2003, astro-ph/0304026.

[78]  M. Wolff,et al.  Two-dimensional Radiative Transfer in Protostellar Envelopes. I. Effects of Geometry on Class I Sources , 2003, astro-ph/0303479.

[79]  M. Tsujimoto,et al.  Deep Near-Infrared Observations and Identifications of Chandra Sources in Orion Molecular Clouds 2 and 3 , 2002, astro-ph/0211521.

[80]  T. Jarrett,et al.  Young Stars and Protostellar Cores near NGC 2023 and the Horsehead Nebula , 2009, 0909.2614.

[81]  D. Johnstone,et al.  Large Area Mapping at 850 Microns. III. Analysis of the Clump Distribution in the Orion B Molecular Cloud , 2001 .

[82]  U. Maryland,et al.  Dense cores in the L1630 molecular cloud: discovering new protostars with SCUBA , 2001, astro-ph/0108359.

[83]  D. Johnstone,et al.  A Submillimeter Dust and Gas Study of the Orion B Molecular Cloud , 2001 .

[84]  P. Andre',et al.  A SCUBA survey of the NGC 2068/2071 protoclusters , 2001 .

[85]  M. Mccaughrean,et al.  Observations of a curving molecular outflow from V380 Ori-NE: further support for prompt entrainment in protostellar outflows , 2000 .

[86]  L. T. Little,et al.  Discovery of a dense bipolar outflow from a new class 0 protostar in NGC 2068/LBS 17 , 2000 .

[87]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[88]  K. Menten,et al.  Dust Continuum Imaging of the HH 24 Region in L1630 , 1999 .

[89]  B. Reipurth,et al.  VLA Detection of Protostars in OMC-2/3 , 1999 .

[90]  L. Hartmann,et al.  Accretion processes in star formation , 1999 .

[91]  David Koerner,et al.  HUBBLE SPACE TELESCOPE/NICMOS Imaging of Disks and Envelopes around Very Young Stars , 1999, astro-ph/9902101.

[92]  M. Mccaughrean,et al.  An unbiased H 2 survey for protostellar jets in Orion A ? II. The infrared survey data , 2002 .

[93]  F. Adams,et al.  Evolution of the Bolometric Temperature and Luminosity of Young Stellar Objects , 1998 .

[94]  E. Falgarone,et al.  Physical Properties of Molecular Cloud Cores in L1630 and Implications for Star Formation , 1997 .

[95]  N. Odegard,et al.  A Three-dimensional Decomposition of the Infrared Emission from Dust in the Milky Way , 1997 .

[96]  J. Bally,et al.  Dust Filaments and Star Formation in OMC-2 and OMC-3 , 1997 .

[97]  L. Hartmann,et al.  The Embedded Young Stars in the Taurus-Auriga Molecular Cloud. II. Models for Scattered Light Images , 1993 .

[98]  P. Myers,et al.  Bolometric temperatures of young stellar objects , 1993 .

[99]  P. Martin,et al.  The Size Distribution of Interstellar Dust Particles as Determined from Extinction , 1993 .

[100]  P. Andre',et al.  Submillimeter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps , 1993 .

[101]  J. Bally,et al.  Molecular outflows associated with young stellar objects in the L1641 region of Orion , 1991 .

[102]  Elizabeth A. Lada,et al.  An Unbiased Survey for Dense Cores in the LYNDS 1630 Molecular Cloud , 1991 .

[103]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[104]  L. Hartmann,et al.  On the apparent positions of T Tauri stars in the H-R diagram , 1990 .

[105]  R. Levreault A search for molecular outflows toward the pre-main-sequence objects , 1988 .

[106]  M. Peimbert,et al.  Star Forming Regions , 1987 .

[107]  S. Wolff,et al.  Optical manifestations of mass outflows from young stars - At atlas of CCD images of Herbig-Haro objects , 1986 .

[108]  P. Cassen,et al.  The collapse of the cores of slowly rotating isothermal clouds , 1984 .

[109]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[110]  J. Moran,et al.  Water-vapor masers located near Herbig-Haro objects. , 1983 .

[111]  P. Cassen,et al.  On the formation of protostellar disks , 1981 .

[112]  R. Ulrich An infall model for the T Tauri phenomenon , 1976 .

[113]  F. Vrba,et al.  Infrared surveys of dark-cloud complexes. I. The Lynds 1630 dark cloud. , 1976 .

[114]  Richard B. Larson,et al.  Numerical Calculations of the Dynamics of a Collapsing Proto-Star , 1969 .