Artificial honeycomb lattices for electrons, atoms and photons.

[1]  M. Segev,et al.  Observation of unconventional edge states in 'photonic graphene'. , 2012, Nature materials.

[2]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[3]  M. Dijkstra,et al.  Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. , 2013, Nano letters.

[4]  K. L. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.

[5]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[6]  Gennady Shvets,et al.  Photonic topological insulators. , 2013, Nature materials.

[7]  F. Guinea,et al.  Interactions and superconductivity in heavily doped MoS2 , 2013, 1301.4836.

[8]  F. D. Juan Non-Abelian gauge fields and quadratic band touching in molecular graphene , 2013, 1301.1285.

[9]  F. Guinea,et al.  Cloning of Dirac fermions in graphene superlattices , 2012, Nature.

[10]  Felix Dreisow,et al.  Photonic Floquet topological insulators , 2012, Nature.

[11]  Tilman Esslinger,et al.  Short-Range Quantum Magnetism of Ultracold Fermions in an Optical Lattice , 2012, Science.

[12]  A. H. Castro Neto,et al.  Topological insulating states in laterally patterned ordinary semiconductors. , 2012, Physical review letters.

[13]  G. Montambaux,et al.  Topological transition of Dirac points in a microwave experiment. , 2012, Physical review letters.

[14]  Lei Wang,et al.  Double transfer through Dirac points in a tunable honeycomb optical lattice , 2012, 1210.0904.

[15]  G. Weick,et al.  Dirac-like plasmons in honeycomb lattices of metallic nanoparticles. , 2012, Physical review letters.

[16]  F. Guinea,et al.  Changes in Fermi surface topology and Hofstadter quantization in graphene superlattices , 2012 .

[17]  T. Esslinger,et al.  Quantum magnetism of ultracold fermions in an optical lattice , 2012 .

[18]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[19]  A. Neto,et al.  Topological Insulating States in Ordinary Semiconductors , 2012 .

[20]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[21]  F. Guinea,et al.  Odd-momentum pairing and superconductivity in vertical graphene heterostructures , 2012, 1207.7318.

[22]  Stefan Nolte,et al.  Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures , 2012, Nature Photonics.

[23]  P. Zoller,et al.  Condensed matter theory of dipolar quantum gases. , 2012, Chemical reviews.

[24]  Seiji Yunoki,et al.  Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice , 2012, Scientific Reports.

[25]  K. Novoselov,et al.  How close can one approach the Dirac point in graphene experimentally? , 2012, Nano letters.

[26]  S. Gopalakrishnan,et al.  Designer quantum spin Hall phase transition in molecular graphene , 2012, 1205.4728.

[27]  M. Lewenstein,et al.  Non-abelian gauge fields and topological insulators in shaken optical lattices. , 2012, Physical review letters.

[28]  Gennady Shvets,et al.  Photonic topological insulators. , 2012, Nature materials.

[29]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[30]  Xu Du,et al.  Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport , 2012, Reports on progress in physics. Physical Society.

[31]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[32]  Francisco Guinea,et al.  Designer Dirac fermions and topological phases in molecular graphene , 2012, Nature.

[33]  Markus Greiner,et al.  Condensed-matter physics: A duo of graphene mimics , 2012, Nature.

[34]  D. Ritchie,et al.  Transport through an electrostatically defined quantum dot lattice in a two-dimensional electron gas , 2012, 1202.3267.

[35]  E Räsänen,et al.  Electron-electron interactions in artificial graphene. , 2012, Physical review letters.

[36]  G. Montambaux,et al.  Bloch-Zener oscillations across a merging transition of Dirac points. , 2012, Physical review letters.

[37]  Tilman Esslinger,et al.  Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice , 2011, Nature.

[38]  S. Bittner,et al.  Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard , 2011, 1110.3263.

[39]  D. Stamper-Kurn,et al.  Ultracold atoms in a tunable optical kagome lattice. , 2011, Physical review letters.

[40]  Rahul Nandkishore,et al.  Chiral superconductivity from repulsive interactions in doped graphene , 2011, Nature Physics.

[41]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[42]  Z. R. Wasilewski,et al.  From laterally modulated two-dimensional electron gas towards artificial graphene , 2011, 1104.5427.

[43]  F. Guinea,et al.  Electron-Electron Interactions in Graphene: Current Status and Perspectives , 2010, 1012.3484.

[44]  P. McClintock,et al.  Graphene: Carbon in Two Dimensions , 2012 .

[45]  M. Morgenstern Scanning tunneling microscopy and spectroscopy of graphene on insulating substrates , 2011, 1204.3817.

[46]  M. I. Katsnelson,et al.  Two-Dimensional Mott-Hubbard Electrons in an Artificial Honeycomb Lattice , 2011, Science.

[47]  M. Segev,et al.  Nonlinear wave dynamics in honeycomb lattices , 2011, 1105.4436.

[48]  P. Windpassinger,et al.  Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices , 2011, Nature Physics.

[49]  C. Hotta,et al.  Designing Dirac points in two-dimensional lattices , 2011, 1104.2526.

[50]  F. Guinea,et al.  Dirac cones reshaped by interaction effects in suspended graphene (vol 7, pg 701, 2011) , 2011, 1104.1396.

[51]  R. Le Targat,et al.  Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices , 2011, Science.

[52]  M. Segev,et al.  PT-symmetry in honeycomb photonic lattices , 2011, 1103.3389.

[53]  B. Shastry,et al.  Split Hubbard bands at low densities , 2011, 1102.1393.

[54]  Chuanwei Zhang,et al.  Quantized anomalous Hall insulator in a nanopatterned two-dimensional electron gas , 2010, 1009.1200.

[55]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[56]  B. Lanyon,et al.  Quantum simulation of the Klein paradox with trapped ions. , 2010, Physical review letters.

[57]  M. Lewenstein,et al.  Multi-component quantum gases in spin-dependent hexagonal lattices , 2010, 1005.1276.

[58]  A. Zettl,et al.  Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles , 2010, Science.

[59]  K. West,et al.  Delocalized-localized transition in a semiconductor two-dimensional honeycomb lattice , 2010, 1007.3168.

[60]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[61]  P. Iriarte,et al.  Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene , 2010, 1005.4506.

[62]  I. Herbut,et al.  Unconventional superconductivity on honeycomb lattice: Theory of Kekule order parameter , 2010, 1005.3563.

[63]  D. Vollhardt Dynamical Mean‐Field Theory of Electronic Correlations in Models and Materials , 2010, 1004.5069.

[64]  Mordechai Segev,et al.  Breakdown of Dirac dynamics in honeycomb lattices due to nonlinear interactions , 2010, 1004.1913.

[65]  Z. Meng,et al.  Quantum spin liquid emerging in two-dimensional correlated Dirac fermions , 2010, Nature.

[66]  Mordechai Segev,et al.  Klein tunneling in deformed honeycomb lattices. , 2010, Physical review letters.

[67]  M. Lewenstein,et al.  Realistic time-reversal invariant topological insulators with neutral atoms. , 2010, Physical review letters.

[68]  M. Modugno,et al.  Delocalization of a disordered bosonic system by repulsive interactions , 2009, 0910.5062.

[69]  M. Lewenstein,et al.  Topological phase transitions in the non-Abelian honeycomb lattice , 2009, 0909.5161.

[70]  F. Guinea,et al.  Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering , 2009, 0909.1787.

[71]  R. Blatt,et al.  Quantum simulation of the Dirac equation , 2009, Nature.

[72]  T. Lahde,et al.  Critical exponents of the semimetal-insulator transition in graphene: A Monte Carlo study , 2009, 0905.1320.

[73]  M. Lewenstein,et al.  The physics of dipolar bosonic quantum gases , 2009, 0905.0386.

[74]  M. Polini,et al.  Engineering artificial graphene in a two-dimensional electron gas , 2009, 0904.4191.

[75]  Markus Müller,et al.  Graphene: a nearly perfect fluid. , 2009, Physical review letters.

[76]  T. Lahde,et al.  Lattice field theory simulations of graphene , 2009, 0901.0584.

[77]  I. Herbut,et al.  Theory of interacting electrons on the honeycomb lattice , 2008, 0811.0610.

[78]  S. Louie,et al.  Making massless Dirac fermions from a patterned two-dimensional electron gas. , 2008, Nano letters.

[79]  J. Drut,et al.  Is graphene in vacuum an insulator? , 2008, Physical review letters.

[80]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[81]  F. Guinea,et al.  Dirac-point engineering and topological phase transitions in honeycomb optical lattices , 2008, 0807.4245.

[82]  Simon Hands,et al.  Quantum critical behavior in a graphenelike model , 2008, 0806.4877.

[83]  C. Beenakker,et al.  Proposed method for detection of the pseudospin-1/2 Berry phase in a photonic crystal with a Dirac spectrum , 2008, 0803.1581.

[84]  G. Montambaux,et al.  Tilted anisotropic Dirac cones in quinoid-type graphene and α-(BEDT-TTF) 2 I 3 , 2008, 0803.0912.

[85]  Xiao-Liang Qi,et al.  Topological Mott insulators. , 2007, Physical review letters.

[86]  S. Raghu,et al.  Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. , 2005, Physical review letters.

[87]  R. Jackiw Fractional Charge from Topology in Polyacetylene and Graphene , 2007 .

[88]  K. Novoselov Graphene: mind the gap. , 2007, Nature materials.

[89]  R. Asgari,et al.  Graphene: A pseudochiral Fermi liquid , 2007, 0704.3786.

[90]  C. Beenakker,et al.  Extremal transmission at the Dirac point of a photonic band structure , 2007, physics/0703184.

[91]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[92]  J. Mañes Symmetry-based approach to electron-phonon interactions in graphene , 2007, cond-mat/0702465.

[93]  R. Asgari,et al.  Chirality and correlations in graphene. , 2007, Physical review letters.

[94]  M. Segev,et al.  Conical diffraction and gap solitons in honeycomb photonic lattices , 2006, 2007 Quantum Electronics and Laser Science Conference.

[95]  Christopher Mudry,et al.  Electron fractionalization in two-dimensional graphenelike structures. , 2006, Physical review letters.

[96]  I. Herbut Interactions and phase transitions on graphene's honeycomb lattice. , 2006, Physical review letters.

[97]  M. Fisher,et al.  Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes , 2006, cond-mat/0604601.

[98]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[99]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[100]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[101]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[102]  C. Kane,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[103]  Gabriel Kotliar,et al.  Strongly Correlated Materials: Insights From Dynamical Mean-Field Theory , 2004 .

[104]  M. Berciu,et al.  Laterally modulated 2D electron system in the extreme quantum limit. , 2003, Physical review letters.

[105]  W. T. Lu,et al.  Negative refraction and left-handed electromagnetism in microwave photonic crystals. , 2003, Physical review letters.

[106]  R. Duine,et al.  Atom-molecule coherence in Bose gases , 2003, cond-mat/0312254.

[107]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[108]  R. Fazio,et al.  Quantum phase transitions and vortex dynamics in superconducting networks , 2000, cond-mat/0011152.

[109]  Albrecht,et al.  Evidence of Hofstadter's Fractal Energy Spectrum in the Quantized Hall Conductance. , 2001, Physical review letters.

[110]  Sandro Sorella,et al.  Semi-Metal-Insulator Transition of the Hubbard Model in the Honeycomb Lattice , 1992 .

[111]  Fisher,et al.  Boson localization and the superfluid-insulator transition. , 1989, Physical review. B, Condensed matter.

[112]  K. Klitzing,et al.  Magnetoresistance oscillations in a two-dimensional electron gas induced by a submicrometer periodic potential , 1989 .

[113]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[114]  G. Bernstein,et al.  Negative differential conductivity in lateral surface superlattices , 1987 .

[115]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[116]  J. Hubbard,et al.  Electron correlations in narrow energy bands III. An improved solution , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[117]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.