Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia.

PURPOSE Patients with relapsed or refractory acute lymphoblastic leukemia (ALL) have a dismal prognosis. CD19 is homogenously expressed in B-precursor ALL and can be targeted by the investigational bispecific T cell-engager antibody blinatumomab. A phase II trial was performed to determine clinical activity in this patient cohort. PATIENTS AND METHODS Thirty-six patients with relapsed or refractory B-precursor ALL were treated with blinatumomab in cycles of 4-week continuous infusion followed by a 2-week treatment-free interval in a single-arm study with a dose-finding stage and an extension stage. The primary end point was complete remission (CR) or CR with partial hematologic recovery (CRh). Major secondary end points included minimal residual disease (MRD) response, rate of allogeneic hematopoietic stem-cell transplantation (HSCT) realization, relapse-free survival (RFS), overall survival (OS), and incidence of adverse events (AEs). RESULTS Median age was 32 years (range, 18 to 77 years). Twenty-five patients (69%) achieved a CR or CRh, with 88% of the responders achieving an MRD response. Median OS was 9.8 months (95% CI, 8.5 to 14.9), and median RFS was 7.6 months (95% CI, 4.5 to 9.5). Thirteen responders (52%) underwent HSCT after achieving a CR or CRh. The most frequent AE during treatment was pyrexia (grade 1 or 2, 75%; grade 3, 6%). In six patients with nervous system or psychiatric disorder AEs and in two patients with cytokine release syndrome, treatment had to be interrupted or discontinued. These medical events were resolved clinically. CONCLUSION The data support further investigation of blinatumomab for the treatment of adult patients with relapsed or refractory ALL in a larger confirmatory study.

[1]  Andreas Wolf,et al.  Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. , 2012, Blood.

[2]  H. Einsele,et al.  Anti-CD19 BiTE Blinatumomab Induces High Complete Remission Rate and Prolongs Overall Survival in Adult Patients with Relapsed/Refractory B-Precursor Acute Lymphoblastic Leukemia (ALL) , 2012 .

[3]  H. Einsele,et al.  Tumor Regression in Cancer Patients by Very Low Doses of a T Cell–Engaging Antibody , 2008, Science.

[4]  Hermann Einsele,et al.  Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  E. Thiel,et al.  Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. , 2012, Blood.

[6]  H. Kantarjian,et al.  Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. , 2012, The Lancet Oncology.

[7]  M. Pfreundschuh,et al.  Open-Label Phase 2 Study Of The Bispecific T-Cell Engager (BiTE®) Blinatumomab In Patients With Relapsed/Refractory Diffuse Large B-Cell Lymphoma , 2013 .

[8]  K. Kreuzer,et al.  Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. , 2012, Blood.

[9]  P. Kufer,et al.  Blinatumomab: a historical perspective. , 2012, Pharmacology & therapeutics.

[10]  Rajesh Chopra,et al.  Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. , 2007, Blood.

[11]  D. Teachey,et al.  CD19-Redirected Chimeric Antigen Receptor T (CART19) Cells Induce a Cytokine Release Syndrome (CRS) and Induction of Treatable Macrophage Activation Syndrome (MAS) That Can Be Managed by the IL-6 Antagonist Tocilizumab (toc). , 2012 .

[12]  R. Pieters,et al.  Standardized MRD quantification in European ALL trials: Proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18–20 September 2008 , 2010, Leukemia.

[13]  Bernd Hauck,et al.  Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. , 2013, The New England journal of medicine.

[14]  H. Kantarjian,et al.  Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. , 2004, Blood.

[15]  H. Kantarjian,et al.  Defining the course and prognosis of adults with acute lymphocytic leukemia in first salvage after induction failure or short first remission duration , 2010, Cancer.

[16]  H. Einsele,et al.  Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. , 2012, Blood.

[17]  A. Nisalak,et al.  Cross-Reactivity and Expansion of Dengue-Specific T cells During Acute Primary and Secondary Infections in Humans , 2011, Scientific reports.

[18]  Scott E. Smith,et al.  High-dose vincristine sulfate liposome injection for advanced, relapsed, and refractory adult Philadelphia chromosome-negative acute lymphoblastic leukemia. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  H. Kantarjian,et al.  Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia , 2013, Cancer.