Level-set based topology optimization of transient flow using lattice Boltzmann method considering an oscillating flow condition

Abstract Topology optimization is widely applied to various design problems in both structure and fluid dynamics engineering. Specifically, the development of energy dissipation devices with vibration control remains a key consideration. The aim of this study is to improve devices that maximize the absorption or dissipation of the vibration of an oscillating object and propose an approach in which the level set based topology optimization of transient flow using the lattice Boltzmann method is simultaneously applied to forward and reverse direction flows to deal with oscillating flows in real-world engineering designs. Although several studies have examined topology optimization to minimize dissipated kinetic energy, this study introduces an objective function for maximizing the dissipated kinetic energy in time-varying fluid flows via velocity gradients.

[1]  Gudrun Thäter,et al.  Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods , 2013, Comput. Math. Appl..

[2]  Takayuki Yamada,et al.  Topology optimization of a no-moving-part valve incorporating Pareto frontier exploration , 2017 .

[3]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[4]  P. Lallemand,et al.  Adjoint lattice Boltzmann equation for parameter identification , 2006 .

[5]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[6]  Takayuki Yamada,et al.  Local-in-time adjoint-based topology optimization of unsteady fluid flows using the lattice Boltzmann method , 2017 .

[7]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[8]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[9]  Nail K. Yamaleev,et al.  Local-in-time adjoint-based method for design optimization of unsteady flows , 2010, J. Comput. Phys..

[10]  Wei Shyy,et al.  A Unified Boundary Treatment in Lattice Boltzmann Method , 2002 .

[11]  Kurt Maute,et al.  Optimal design for non-Newtonian flows using a topology optimization approach , 2010, Comput. Math. Appl..

[12]  Sebastian A. Nørgaard,et al.  Topology optimization and lattice Boltzmann methods , 2017 .

[13]  Behrend Solid-fluid boundaries in particle suspension simulations via the lattice Boltzmann method. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[15]  V. Heuveline,et al.  Parallel fluid flow control and optimisation with lattice Boltzmann methods and automatic differentiation , 2013 .

[16]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[17]  Xianbao Duan,et al.  Topology optimization of incompressible Navier-Stokes problem by level set based adaptive mesh method , 2016, Comput. Math. Appl..

[18]  K. Maute,et al.  A parallel Schur complement solver for the solution of the adjoint steady-state lattice Boltzmann equations: application to design optimisation , 2008 .

[19]  Heiko Andrä,et al.  A new algorithm for topology optimization using a level-set method , 2006, J. Comput. Phys..

[20]  Norberto Fueyo,et al.  Analysis of open boundary effects in unsteady lattice Boltzmann simulations , 2009, Comput. Math. Appl..

[21]  Jacek Rokicki,et al.  Adjoint Lattice Boltzmann for topology optimization on multi-GPU architecture , 2015, Comput. Math. Appl..

[22]  O. Sigmund,et al.  Topology optimization of channel flow problems , 2005 .

[23]  K. Maute,et al.  Topology optimization for unsteady flow , 2011 .

[24]  Takayuki Yamada,et al.  Topology optimization in thermal-fluid flow using the lattice Boltzmann method , 2016, J. Comput. Phys..

[25]  James D. Sterling,et al.  Accuracy of Discrete-Velocity BGK Models for the Simulation of the Incompressible Navier-Stokes Equations , 1993, comp-gas/9307003.

[26]  Yoshihiro Kanno,et al.  Topology optimization method for interior flow based on transient information of the lattice Boltzmann method with a level-set function , 2017 .

[27]  Ole Sigmund,et al.  Topology optimization of large scale stokes flow problems , 2008 .

[28]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[29]  Masato Yoshino,et al.  Comparison of Accuracy and Efficiency between the Lattice Boltzmann Method and the Finite Difference Method in Viscous/Thermal Fluid Flows , 2004 .

[30]  A. Evgrafov Topology optimization of slightly compressible fluids , 2006 .

[31]  James K. Guest,et al.  Topology Optimization of Fixed-Geometry Fluid Diodes , 2015 .

[32]  K. Maute,et al.  Topology optimization of flow domains using the lattice Boltzmann method , 2007 .

[33]  K. Maute,et al.  Topology optimization of flexible micro-fluidic devices , 2010 .

[34]  G. Allaire,et al.  A level-set method for shape optimization , 2002 .

[35]  Shiyi Chen,et al.  Stability Analysis of Lattice Boltzmann Methods , 1993, comp-gas/9306001.

[36]  Takayuki Yamada,et al.  Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions , 2014, J. Comput. Phys..

[37]  Kurt Maute,et al.  Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method , 2012 .

[38]  Martin Geier,et al.  Discrete adjoint sensitivity analysis for fluid flow topology optimization based on the generalized lattice Boltzmann method , 2014, Comput. Math. Appl..

[39]  Ping Zhang,et al.  Optimization of unsteady incompressible Navier–Stokes flows using variational level set method , 2013 .

[40]  Takayuki Yamada,et al.  A topology optimization method based on the level set method incorporating a fictitious interface energy , 2010 .

[41]  Sauro Succi,et al.  The lattice Boltzmann equation: theory and application , 1993 .

[42]  R. Errico What is an adjoint model , 1997 .

[43]  Ole Sigmund,et al.  Topology optimization of unsteady flow problems using the lattice Boltzmann method , 2016, J. Comput. Phys..

[44]  Yoshihiro Kanno,et al.  A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann method , 2015 .

[45]  Martin Berggren,et al.  Topology Optimization of Mass Distribution Problems in Stokes Flow , 2006 .

[46]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[47]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[48]  Qing Li,et al.  A variational level set method for the topology optimization of steady-state Navier-Stokes flow , 2008, J. Comput. Phys..

[49]  Kurt Maute,et al.  Lattice Boltzmann Topology Optimization for Transient Flow , 2011 .

[50]  James K. Guest,et al.  Level set topology optimization of fluids in Stokes flow , 2009 .

[51]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[52]  W. Shyy,et al.  Improved treatment of the open boundary in the method of Lattice Boltzmann equation , 2005 .

[53]  Ole Sigmund,et al.  Topology optimization of microfluidic mixers , 2009 .

[54]  Boyan S. Lazarov,et al.  Applications of automatic differentiation in topology optimization , 2017 .

[55]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[56]  Kikuo Fujita,et al.  Large-scale topology optimization incorporating local-in-time adjoint-based method for unsteady thermal-fluid problem , 2018 .

[57]  Ping Zhang,et al.  Topology optimization of unsteady incompressible Navier-Stokes flows , 2011, J. Comput. Phys..

[58]  L. H. Olesen,et al.  A high‐level programming‐language implementation of topology optimization applied to steady‐state Navier–Stokes flow , 2004, physics/0410086.