Vector Space Basis Change in Information Retrieval

The Vector Space Basis Change (VSBC) is an algebraic operator responsible for change of basis and it is parameterized by a transition matrix. If we change the vector space basis, then each vector com- ponent changes depending on this matrix. The strategy of VSBC has been shown to be effective in separating relevant documents and irrelevant ones. Recently, using this strategy, some feedback algorithms have been de- veloped. To build a transition matrix some optimization methods have been used. In this paper, we propose to use a simple, convenient and direct method to build a transition matrix. Based on this method we develop a relevance feedback algorithm. Experimental results on a TREC collection show that our proposed method is effective and generally superior to known VSBC-based models. We also show that our proposed method gives a statistically significant improvement over these models.

[1]  Gerard Salton,et al.  Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer , 1989 .

[2]  Alberto Flores Rueda,et al.  Computación Y Sistemas , 2022 .

[3]  Tao Tao,et al.  Regularized estimation of mixture models for robust pseudo-relevance feedback , 2006, SIGIR.

[4]  Yang Xu,et al.  Query dependent pseudo-relevance feedback based on wikipedia , 2009, SIGIR.

[5]  Massimo Melucci Context modeling and discovery using vector space bases , 2005, CIKM '05.

[6]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[7]  Mohamed Tmar,et al.  A New Relevance Feedback Algorithm Based on Vector Space Basis Change , 2014, CICLing.

[8]  Donna K. Harman,et al.  Relevance feedback revisited , 1992, SIGIR '92.

[9]  Mohamed Tmar,et al.  Rocchio's Model Based on Vector Space Basis Change for Pseudo Relevance Feedback , 2014, SLATE.

[10]  W. Bruce Croft,et al.  Relevance Feedback and Personalization: A Language Modeling Perspective , 2001, DELOS.

[11]  Raya Fidel,et al.  Ranking expansion terms using partial and ostensive evidence , 2002 .

[12]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[13]  James Allan,et al.  INQUERY and TREC-8 , 1998, TREC.

[14]  Gerard Salton,et al.  Automatic Information Organization And Retrieval , 1968 .

[15]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[16]  Mohamed Tmar,et al.  Relevance Feedback Method Based on Vector Space Basis Change , 2012, SPIRE.

[17]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[18]  Keith van Rijsbergen,et al.  Ranking expansion terms with partial and ostensive evidence , 2002 .

[19]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[20]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[21]  Dong Zhou,et al.  Collaborative pseudo-relevance feedback , 2013, Expert Syst. Appl..

[22]  Stephen E. Robertson,et al.  Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval , 1994, SIGIR '94.

[23]  Dong Zhou,et al.  Improving search via personalized query expansion using social media , 2012, Information Retrieval.

[24]  Mohamed Tmar,et al.  An Optimal Context for Information Retrieval , 2014, AAIM.

[25]  Luis M. de Campos,et al.  Relevance Feedback in the Bayesian Network Retrieval Model: An Approach Based on Term Instantiation , 2001, IDA.

[26]  Annalina Caputo,et al.  Negation for Document Re-ranking in Ad-hoc Retrieval , 2011, ICTIR.

[27]  Stephen E. Robertson,et al.  Selecting good expansion terms for pseudo-relevance feedback , 2008, SIGIR '08.

[28]  Massimo Melucci,et al.  A basis for information retrieval in context , 2008, TOIS.

[29]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[30]  ChengXiang Zhai,et al.  Positional relevance model for pseudo-relevance feedback , 2010, SIGIR.

[31]  Charles Elkan,et al.  Latent semantic indexing (LSI) fails for TREC collections , 2011, SKDD.

[32]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[33]  Tetsuya Sakai,et al.  Flexible pseudo-relevance feedback via selective sampling , 2005, TALIP.

[34]  Mounia Lalmas,et al.  A survey on the use of relevance feedback for information access systems , 2003, The Knowledge Engineering Review.

[35]  C. J. van Rijsbergen,et al.  The geometry of information retrieval , 2004 .

[36]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .