The role of pirfenidone in alkali burn rat cornea

[1]  R. Mohan,et al.  Therapeutic potential of Pirfenidone for treating equine corneal scarring. , 2015, Veterinary ophthalmology.

[2]  A. Djalilian,et al.  Rapamycin inhibits the production of myofibroblasts and reduces corneal scarring after photorefractive keratectomy. , 2013, Investigative Ophthalmology and Visual Science.

[3]  U. Kompella,et al.  Pirfenidone Nanoparticles Improve Corneal Wound Healing and Prevent Scarring Following Alkali Burn , 2013, PloS one.

[4]  Chulhee Choi,et al.  Pirfenidone inhibits transforming growth factor-β1-induced fibrogenesis by blocking nuclear translocation of Smads in human retinal pigment epithelial cell line ARPE-19 , 2012, Molecular vision.

[5]  Minbin Yu,et al.  Evaluation of pirfenidone as a new postoperative antiscarring agent in experimental glaucoma surgery. , 2011, Investigative ophthalmology & visual science.

[6]  Youn-Hee Choi,et al.  Antifibrotic effect of Pirfenidone on orbital fibroblasts of patients with thyroid-associated ophthalmopathy by decreasing TIMP-1 and collagen levels. , 2010, Investigative ophthalmology & visual science.

[7]  H. Collard Idiopathic pulmonary fibrosis and pirfenidone , 2010, European Respiratory Journal.

[8]  D. Fairclough,et al.  Pirfenidone in idiopathic pulmonary fibrosis , 2010, European Respiratory Journal.

[9]  H. Kleinman,et al.  In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract , 2010, Nature Protocols.

[10]  M. Kimura,et al.  Pretranscriptional regulation of Tgf-beta1 by PI polyamide prevents scarring and accelerates wound healing of the cornea after exposure to alkali. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[11]  Minbin Yu,et al.  Effects of pirfenidone on proliferation, migration, and collagen contraction of human Tenon's fibroblasts in vitro. , 2009, Investigative ophthalmology & visual science.

[12]  S. Becerra Focus on Molecules: Pigment epithelium-derived factor (PEDF). , 2006, Experimental eye research.

[13]  M. Danilewicz,et al.  [Evaluation of intensity of angiogenesis in granulation tissue in chronic otitis media--preliminary report]. , 2006, Otolaryngologia polska = The Polish otolaryngology.

[14]  Cynthia Owsley,et al.  Rate of eye injury in the United States. , 2005, Archives of ophthalmology.

[15]  S. Kudoh,et al.  Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. , 2005, American journal of respiratory and critical care medicine.

[16]  William Li,et al.  Effects of growth factors (EGF, PDGF-BB and TGF-beta 1) on cultured equine epithelial cells and keratocytes: implications for wound healing. , 2003, Veterinary ophthalmology.

[17]  F. Ridolfi,et al.  Effect of pirfenidone on rat hepatic stellate cell proliferation and collagen production. , 2002, Journal of hepatology.

[18]  G. Becker,et al.  Pirfenidone reduces in vitro rat renal fibroblast activation and mitogenesis. , 2001, Journal of nephrology.

[19]  R. Mohan,et al.  Expression of HGF, KGF, EGF and receptor messenger RNAs following corneal epithelial wounding. , 1999, Experimental eye research.

[20]  G. Raghu,et al.  Treatment of Idiopathic Pulmonary Fibrosis with a New Antifibrotic Agent , Pirfenidone Results of a Prospective , Open-label Phase II Study , 1999 .

[21]  I. Shiels,et al.  Pirfenidone reduces fibronectin synthesis by cultured human retinal pigment epithelial cells. , 1998, Australian and New Zealand journal of ophthalmology.

[22]  G. D. Phillips,et al.  Vascular endothelial growth factor (rhVEGF165) stimulates direct angiogenesis in the rabbit cornea. , 1994, In vivo.

[23]  G. Gabbiani,et al.  Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. , 1990, Laboratory investigation; a journal of technical methods and pathology.