Convergence Analysis of Triangular MAC Schemes for Two Dimensional Stokes Equations

In this paper, we consider the use of $$H(\mathrm{div })$$H(div) elements in the velocity–pressure formulation to discretize Stokes equations in two dimensions. We address the error estimate of the element pair $$\mathrm{RT}_0$$RT0–$$\mathrm{P}_0$$P0, which is known to be suboptimal, and render the error estimate optimal by the symmetry of the grids and by the superconvergence result of Lagrange interpolant. By enlarging $$\mathrm{RT}_0$$RT0 such that it becomes a modified $$\mathrm{BDM}$$BDM-type element, we develop a new discretization $$\mathrm{BDM}_1^\mathrm{b}$$BDM1b–$$\mathrm{P}_0$$P0. We, therefore, generalize the classical MAC scheme on rectangular grids to triangular grids and retain all the desirable properties of the MAC scheme: exact divergence-free, solver-friendly, and local conservation of physical quantities. Further, we prove that the proposed discretization $$\mathrm{BDM}_1^\mathrm{b}$$BDM1b–$$\mathrm{P}_0$$P0 achieves the optimal convergence rate for both velocity and pressure on general quasi-uniform grids, and one and half order convergence rate for the vorticity and a recovered pressure. We demonstrate the validity of theories developed here by numerical experiments.

[1]  Roy A. Nicolaides,et al.  Convergence analysis of a covolume scheme for Maxwell's equations in three dimensions , 1998, Math. Comput..

[2]  R. A. Nicolaides,et al.  Flow discretization by complementary volume techniques , 1989 .

[3]  R. Temam Navier-Stokes Equations , 1977 .

[4]  Qun Lin,et al.  Superconvergence analysis for Maxwell's equations in dispersive media , 2007, Math. Comput..

[5]  Douglas N. Arnold,et al.  Mixed finite element approximation of the vector Laplacian with Dirichlet boundary conditions , 2011, 1109.3668.

[6]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..

[7]  Robert Eymard,et al.  On MAC schemes on triangular delaunay meshes, their convergence and application to coupled flow problems , 2014 .

[8]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[9]  B. Perot Conservation Properties of Unstructured Staggered Mesh Schemes , 2000 .

[10]  HUO-YUAN DUAN,et al.  On the Velocity-Pressure-Vorticity Least-Squares Mixed Finite Element Method for the 3D Stokes Equations , 2003, SIAM J. Numer. Anal..

[11]  Richard S. Falk,et al.  Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation , 2013, SIAM J. Numer. Anal..

[12]  Michael Holst,et al.  Efficient mesh optimization schemes based on Optimal Delaunay Triangulations , 2011 .

[13]  A. Brandt,et al.  Multigrid Solutions to Elliptic Flow Problems , 1979 .

[14]  R. Nicolaides,et al.  Covolume Solutions of Three-Dimensional Div-Curl Equations , 1997 .

[15]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[16]  J. Blair Perot,et al.  Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .

[17]  YE XIU NEW FINITE ELEMENT METHODS IN COMPUTATIONAL FLUID DYNAMICS BY H ( DIV ) ELEMENTS , 2008 .

[18]  Ivo Marek,et al.  Superconvergence results on mildly structured triangulations , 2000 .

[19]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[20]  Vivette Girault,et al.  Finite-element error estimates for the MAC scheme , 1996 .

[21]  Bernardo Cockburn,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[22]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[23]  Ming Wang,et al.  Multigrid Methods for the Stokes Equations using Distributive Gauss–Seidel Relaxations based on the Least Squares Commutator , 2013, Journal of Scientific Computing.

[24]  R. Nicolaides Analysis and convergence of the MAC scheme. I : The linear problem , 1992 .

[25]  Qun Lin,et al.  Global superconvergence for Maxwell's equations , 2000, Math. Comput..

[26]  G. Kanschat Divergence‐free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme , 2008 .

[27]  Long Chen,et al.  Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations , 2004, IMR.

[28]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[29]  Michael Neilan,et al.  Conforming and divergence-free Stokes elements on general triangular meshes , 2013, Math. Comput..

[30]  Cornelis W. Oosterlee,et al.  Multigrid Methods for the Stokes System , 2006, Computing in Science & Engineering.

[31]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[32]  Jinchao Xu,et al.  Superconvergence of quadratic finite elements on mildly structured grids , 2008, Math. Comput..

[33]  Peter D. Minev Remarks on the links between low-order DG methods and some finite-difference schemes for the Stokes problem , 2008 .

[34]  Houde Han,et al.  A New Mixed Finite Element Formulation and the MAC Method for the Stokes Equations , 1998 .

[35]  F. Dubois,et al.  First vorticity-velocity-pressure numerical scheme for the Stokes problem , 2003 .

[36]  J. Maître,et al.  Connection between finite volume and mixed finite element methods , 1996 .

[37]  X. Wu,et al.  Analysis and convergence of the MAC scheme. II. Navier-Stokes equations , 1996, Math. Comput..

[38]  G. Wittum Multi-grid methods for stokes and navier-stokes equations , 1989 .

[39]  François Dubois,et al.  Vorticity–velocity–pressure formulation for the Stokes problem , 2002 .

[40]  Douglas N. Arnold,et al.  On the consistency of the combinatorial codifferential , 2012 .

[41]  R. A. Nicolaides,et al.  Discretization of incompressible vorticity–velocity equations on triangular meshes , 1990 .

[42]  Junping Wang,et al.  A NEW FINITE VOLUME METHOD FOR THE STOKES PROBLEMS , 2009 .

[43]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[44]  Bernardo Cockburn,et al.  The Derivation of Hybridizable Discontinuous Galerkin Methods for Stokes Flow , 2009, SIAM J. Numer. Anal..

[45]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[46]  F. Dubois,et al.  Vorticity–velocity-pressure and stream function-vorticity formulations for the Stokes problem , 2003 .

[47]  Bernardo Cockburn,et al.  Hybridized globally divergence-free LDG methods. Part I: The Stokes problem , 2005, Math. Comput..