Triggerable plasmalogen liposomes: improvement of system efficiency.

[1]  P. Stauffer,et al.  Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. , 1994, Cancer research.

[2]  P. Cullis,et al.  Accumulation of doxorubicin and other lipophilic amines into large unilamellar vesicles in response to transmembrane pH gradients. , 1993, Biochimica et biophysica acta.

[3]  S. Rananavare,et al.  Tetraether bolaform amphiphiles as models of archaebacterial membrane lipids: Raman spectroscopy, phosphorus-31 NMR, x-ray scattering, and electron microscopy , 1992 .

[4]  B. Armitage,et al.  Vectorial photoinduced electron transfer between phospholipid membrane-bound donors and acceptors , 1992 .

[5]  L. Huang,et al.  Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. , 1992, Biochimica et biophysica acta.

[6]  M. Woodle,et al.  Sterically stabilized liposomes. , 1992, Biochimica et biophysica acta.

[7]  D. Thompson,et al.  Triggered release of hydrophilic agents from plasmalogen liposomes using visible light or acid. , 1992, Biochimica et biophysica acta.

[8]  D. Lasič,et al.  Therapy of primary and metastatic mouse mammary carcinomas with doxorubicin encapsulated in long circulating liposomes , 1992, International journal of cancer.

[9]  F. Martin,et al.  Pharmacokinetics and antitumor activity of epirubicin encapsulated in long‐circulating liposomes incorporating a polyethylene glycol‐derivatized phospholipid , 1992, International journal of cancer.

[10]  L. Huang,et al.  Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. , 1992, Biochimica et biophysica acta.

[11]  D. Papahadjopoulos,et al.  Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. , 1992, Biochimica et biophysica acta.

[12]  A. Gabizon,et al.  The role of surface charge and hydrophilic groups on liposome clearance in vivo. , 1992, Biochimica et biophysica acta.

[13]  P. Lenz,et al.  Determination of the optical penetration depth in tumors from biopsy samples , 1991, MedTech.

[14]  T M Allen,et al.  Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. , 1991, Biochimica et biophysica acta.

[15]  B. Wilson,et al.  CURRENT AND FUTURE TRENDS IN LASER MEDICINE , 1991, Photochemistry and photobiology.

[16]  G Blume,et al.  Liposomes for the sustained drug release in vivo. , 1990, Biochimica et biophysica acta.

[17]  W. E. Ford,et al.  Synthesis and Photoproperties of Diamagnetic Octabutoxyphthalocyanines with Deep Red Optical Absorbance. , 1990 .

[18]  M. Bally,et al.  Liposomes with entrapped doxorubicin exhibit extended blood residence times. , 1990, Biochimica et biophysica acta.

[19]  B. Lebleu,et al.  Antibody targeted liposomes containing poly(rI) · poly(rC) exert a specific antiviral and toxic effect on cells primed with interferons α/β or γ , 1989 .

[20]  P. Cullis,et al.  Freeze-fracture of lipids and model membrane systems. , 1989, Journal of electron microscopy technique.

[21]  M. Bally,et al.  Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. , 1989, Cancer research.

[22]  T. G. Truscott,et al.  Laser flash photolysis of purpurins: novel potential photosensitizers of interest in photodynamic therapy. , 1988, Journal of photochemistry and photobiology. B, Biology.

[23]  C. Raetz,et al.  A possible role for plasmalogens in protecting animal cells against photosensitized killing. , 1988, The Journal of biological chemistry.

[24]  C. Raetz,et al.  Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. , 1988, The Journal of biological chemistry.

[25]  E. Reddi,et al.  THE PRODUCTION OF SINGLET MOLECULAR OXYGEN BY ZINC(II) PHTHALOCYANINE IN ETHANOL AND IN UNILAMELLAR VESICLES. CHEMICAL QUENCHING AND PHOSPHORESCENCE STUDIES , 1988, Photochemistry and photobiology.

[26]  T M Allen,et al.  Large unilamellar liposomes with low uptake into the reticuloendothelial system , 1987, FEBS letters.

[27]  G. Lindblom,et al.  Phase equilibria in four lysophosphatidylcholine/water systems , 1985 .

[28]  M. Bally,et al.  Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential. , 1985, Biochimica et biophysica acta.

[29]  A. Verkleij,et al.  Lipidic intramembranous particles. , 1984, Nature.

[30]  D. Walz,et al.  SITE‐SELECTION SPECTROSCOPY OF CHLOROPHYLL b IN MEMBRANES OF LECITHIN VESICLES AND IN OTHER SOLVENTS , 1983 .

[31]  H. Möhwald,et al.  Paramagnetic fluorescence quenching in chlorophyll A containing vesicles: evidence for the localization of chlorophyll. , 1977, Biochemical and biophysical research communications.

[32]  J. Norris,et al.  Evidence for the localization of chlorophyll in lipid vesicles: a spin label study. , 1976, Biochemical and biophysical research communications.

[33]  Francis C. Szoka,et al.  pH-Sensitive Liposomes , 1994 .

[34]  Steven S. Vogel,et al.  Mechanisms of membrane fusion. , 1993, Annual review of biophysics and biomolecular structure.

[35]  David Kessel,et al.  Photodynamic therapy of neoplastic disease , 1990 .

[36]  D. Jensen,et al.  Medical Laser Endoscopy , 1990, Developments in Gastroenterology.

[37]  G. Bock,et al.  Photosensitizing compounds : their chemistry, biology and clinical use , 1989 .