High-temperature surface alloying of nanocrystalline nickel produced by surface mechanical attrition treatment

[1]  Liang Wang,et al.  The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel , 2010 .

[2]  H. Chan,et al.  Optimization of the strain rate to achieve exceptional mechanical properties of 304 stainless steel using high speed ultrasonic surface mechanical attrition treatment , 2010 .

[3]  K. Lu,et al.  Interfacial diffusion in Cu with a gradient nanostructured surface layer , 2010 .

[4]  A. L. Ortiz,et al.  Experimental study of the microstructure and stress state of shot peened and surface mechanical attrition treated nickel alloys , 2010 .

[5]  L. Shaw,et al.  Nanocrystallization process and mechanism in a nickel alloy subjected to surface severe plastic deformation , 2009 .

[6]  Ke Lu,et al.  Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept behind a New Approach , 2009 .

[7]  Jonathan C. Y. Chung,et al.  Surface mechanical attrition treatment induced phase transformation behavior in NiTi shape memory alloy , 2009 .

[8]  L. Takács,et al.  Coating a Cu plate with a Zr-Ti powder mixture using surface mechanical attrition treatment , 2009 .

[9]  W. Li,et al.  Measurement of microstructural parameters of nanocrystalline Fe–30 wt.%Ni alloy produced by surface mechanical attrition treatment , 2009 .

[10]  Ping Liu,et al.  Microstructural characterization of nanocrystalline nickel produced by surface mechanical attrition treatment , 2009 .

[11]  W. Li,et al.  Interdiffusion of alloying elements in nanocrystalline Fe–30 wt.% Ni alloy during surface mechanical attrition treatment and its effect on α → γ transformation , 2008 .

[12]  A. L. Ortiz,et al.  Interrogation of the microstructure and residual stress of a nickel-base alloy subjected to surface severe plastic deformation , 2008 .

[13]  P. Liaw,et al.  A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 superalloy , 2007 .

[14]  Jian Lu,et al.  Microstructural evolution and formation of nanocrystalline intermetallic compound during surface mechanical attrition treatment of cobalt , 2007 .

[15]  L. Takács,et al.  Coating metals by surface mechanical attrition treatment , 2007 .

[16]  C. Schuh,et al.  Contribution of triple junctions to the diffusion anomaly in nanocrystalline materials , 2007 .

[17]  C. Koch,et al.  Structural nanocrystalline materials: an overview , 2007 .

[18]  F. Mohamed,et al.  Investigation of low temperature thermal stability in bulk nanocrystalline Ni , 2006 .

[19]  B. Huang,et al.  Nanocrystallization and magnetic properties of Fe-30 weight percent Ni alloy by surface mechanical attrition treatment , 2006 .

[20]  G. Tichy,et al.  Correlation between subgrains and coherently scattering domains , 2005, Powder Diffraction.

[21]  Jian Lu,et al.  Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment , 2004 .

[22]  Jian Lu,et al.  Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment , 2003 .

[23]  Ádám Révész,et al.  Microstructural characterization of ultrafine-grained nickel , 2003 .

[24]  R. Würschum,et al.  Diffusion in Nanocrystalline Metals and Alloys—A Status Report , 2003 .

[25]  R. Valiev,et al.  Thermal stability and microstructural evolution in ultrafine-grained nickel after equal-channel angular pressing (ECAP) , 2002 .

[26]  E. Lavernia,et al.  Grain growth of nanocrystalline Ni powders prepared by cryomilling , 2001 .

[27]  N. Hansen,et al.  Microstructure and strength of nickel at large strains , 2000 .

[28]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[29]  Zushu Hu,et al.  Evolution of dislocation structure induced by cyclic deformation in a directionally solidified cobalt base superalloy , 1999 .

[30]  T. Ungár,et al.  Dislocations and Grain Size in Electrodeposited Nanocrystalline Ni Determined by the Modified Williamson–Hall and Warren–Averbach Procedures , 1998 .

[31]  U. Erb,et al.  Isokinetic analysis of nanocrystalline nickel electrodeposits upon annealing , 1997 .

[32]  Tamás Ungár,et al.  The effect of dislocation contrast on x‐ray line broadening: A new approach to line profile analysis , 1996 .

[33]  J. Lendvai,et al.  Dislocations and grain size in ball-milled iron powder , 1996 .

[34]  A R Stokes,et al.  A Numerical Fourier-analysis Method for the Correction of Widths and Shapes of Lines on X-ray Powder Photographs , 1948 .

[35]  Dawei Li,et al.  The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel , 2009 .

[36]  J. Gubicza,et al.  Nanocrystalline materials studied by powder diffraction line profile analysis , 2007 .

[37]  W. Johnson,et al.  Thermal stability and grain growth behavior of mechanically alloyed nanocrystalline Fe-Cu alloys , 1993 .