Small Gold(I) and Gold(I)–Silver(I) Clusters by C−Si Auration

Abstract Auration of o‐trimethylsilyl arylphosphines leads to the formation of gold and gold–silver clusters with ortho‐metalated phosphines displaying 3c–2e Au−C−M bonds (M=Au/Ag). Hexagold clusters [Au6L4](X)2 are obtained by reaction of (L−TMS)AuCl with AgX, whereas reaction with AgX and Ag2O leads to gold–silver clusters [Au4Ag2L4](X)2. Oxo‐trigold(I) species [Au3O]+ were identified as the intermediates in the formation of the silver‐doped clusters. Other [Au5], [Au4Ag], and [Au12Ag4] clusters were also obtained. Clusters containing PAu−Au−AuP structural motif display good catalytic activity in the activation of alkynes under homogeneous conditions.

[1]  M. Kovalenko,et al.  A Small Cationic Organo-Copper Cluster as Thermally Robust Highly Photo- and Electro Luminescent Material. , 2019, Journal of the American Chemical Society.

[2]  H. Nishihara,et al.  Tri‐ and Tetranuclear Metal‐String Complexes with Metallophilic d10–d10 Interactions , 2019, Chemistry.

[3]  T. Yonezawa,et al.  Basic [Au₂₅(SCH₂CH₂Py)₁₈]-·Na+ Clusters: Synthesis, Layered Crystallographic Arrangement, and Unique Surface Protonation. , 2019, Angewandte Chemie.

[4]  T. Yonezawa,et al.  Basic [Au 25 (SCH 2 CH 2 Py) 18 ] − ⋅Na + Clusters: Synthesis, Layered Crystallographic Arrangement, and Unique Surface Protonation , 2019, Angewandte Chemie.

[5]  R. Si,et al.  Reversible Switching of Catalytic Activity by Shuttling an Atom into and out of Gold Nanoclusters. , 2019, Angewandte Chemie.

[6]  R. Si,et al.  Reversible Switching of Catalytic Activity by Shuttling an Atom into and out of Gold Nanoclusters , 2019, Angewandte Chemie.

[7]  M. Workentin,et al.  Golden Opportunity: A Clickable Azide-Functionalized [Au25(SR)18]- Nanocluster Platform for Interfacial Surface Modifications. , 2019, Journal of the American Chemical Society.

[8]  N. Zheng,et al.  Highly Robust but Surface-Active: N-Heterocyclic Carbene-Stabilized Au25 Nanocluster as a Homogeneous Catalyst , 2019 .

[9]  Yukatsu Shichibu,et al.  Unusual Attractive Au-π Interactions in Small Diacetylene-Modified Gold Clusters. , 2019, Angewandte Chemie.

[10]  W. Leong,et al.  A comparative study on atomically precise Au nanoclusters as catalysts for the aldehyde–alkyne–amine (A3) coupling reaction: ligand effects on the nature of the catalysis and efficiency , 2019, RSC advances.

[11]  Manzhou Zhu,et al.  The photoluminescent metal nanoclusters with atomic precision , 2017, Coordination Chemistry Reviews.

[12]  Quan‐Ming Wang,et al.  Homo and heterometallic gold(I) clusters with hypercoordinated carbon , 2017, Coordination Chemistry Reviews.

[13]  Quan‐Ming Wang,et al.  Alkynyl Approach toward the Protection of Metal Nanoclusters. , 2018, Accounts of chemical research.

[14]  G. Lloyd‐Jones,et al.  Au-Catalyzed Oxidative Arylation: Chelation-Induced Turnover of ortho-Substituted Arylsilanes , 2018, ACS Catalysis.

[15]  M. Shionoya,et al.  A Carbon-Centered Hexagold(I) Cluster Supported by N-Heterocyclic Carbene Ligands , 2018, Organometallics.

[16]  Avelino Corma,et al.  Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles , 2018, Chemical reviews.

[17]  G. Jiménez‐Osés,et al.  The key role of Au-substrate interactions in catalytic gold subnanoclusters , 2017, Nature Communications.

[18]  U. Landman,et al.  Selective C-H Bond Cleavage in Methane by Small Gold Clusters. , 2017, Angewandte Chemie.

[19]  Yongbo Song,et al.  Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure , 2017, Science Advances.

[20]  Quan‐Ming Wang,et al.  Luminescence responsive intracluster rearrangements of gold(i)-silver(i) clusters triggered by acetonitrile. , 2016, Chemical communications.

[21]  N. Bandeira,et al.  Polynuclear Gold [AuI]4, [AuI]8, and Bimetallic [AuI 4AgI] Complexes: C−H Functionalization of Carbonyl Compounds and Homogeneous Carbonylation of Amines , 2016, Angewandte Chemie.

[22]  Manas R. Parida,et al.  Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Quantum Yield. , 2016, Angewandte Chemie.

[23]  Hong Jiang,et al.  Structurally Well-Defined Sigmoidal Gold Clusters: Probing the Correlation between Metal Atom Arrangement and Chiroptical Response. , 2016, Journal of the American Chemical Society.

[24]  Yongbo Song,et al.  Total structure determination of surface doping [Ag46Au24(SR)32](BPh4)2 nanocluster and its structure-related catalytic property , 2015, Science Advances.

[25]  Vonika Ka-Man Au,et al.  Light-Emitting Self-Assembled Materials Based on d(8) and d(10) Transition Metal Complexes. , 2015, Chemical reviews.

[26]  T. Wen,et al.  Highly Active Gold(I)-Silver(I) Oxo Cluster Activating sp³ C-H Bonds of Methyl Ketones under Mild Conditions. , 2015, Journal of the American Chemical Society.

[27]  G. Bertrand,et al.  Trinuclear gold clusters supported by cyclic (alkyl)(amino)carbene ligands: mimics for gold heterogeneous catalysts. , 2014, Angewandte Chemie.

[28]  S. Tunik,et al.  Metallophilicity-assisted assembly of phosphine-based cage molecules. , 2014, Dalton transactions.

[29]  A. Corma,et al.  Very Small (3–6 Atoms) Gold Cluster Catalyzed Carbon–Carbon and Carbon–Heteroatom Bond‐Forming Reactions in Solution , 2013 .

[30]  Quan‐Ming Wang,et al.  Postclustering dynamic covalent modification for chirality control and chiral sensing. , 2013, Journal of the American Chemical Society.

[31]  A. Echavarren,et al.  A Hexanuclear Gold Cluster Supported by Three-Center–Two-Electron Bonds and Aurophilic Interactions , 2013, Angewandte Chemie.

[32]  Quan‐Ming Wang,et al.  Geminal tetraauration of acetonitrile: hemilabile-phosphine-stabilized Au8Ag4 cluster compounds. , 2013, Journal of the American Chemical Society.

[33]  Rongchao Jin,et al.  Atomically precise gold nanoclusters as new model catalysts. , 2013, Accounts of chemical research.

[34]  P. McGonigal,et al.  Gold for the generation and control of fluxional barbaralyl cations. , 2012, Angewandte Chemie.

[35]  A. Corma,et al.  Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature , 2012, Science.

[36]  S. James,et al.  Synthesis of gold-silver luminescent honeycomb aggregates by both solvent-based and solvent-free methods. , 2012, Angewandte Chemie.

[37]  Tania Lasanta,et al.  Making the golden connection: reversible mechanochemical and vapochemical switching of luminescence from bimetallic gold-silver clusters associated through aurophilic interactions. , 2011, Journal of the American Chemical Society.

[38]  P. Toullec,et al.  Asymmetric Au-catalyzed domino cyclization/nucleophile addition reactions of enynes in the presence of water, methanol and electron-rich aromatic derivatives , 2011 .

[39]  K. Nomiya,et al.  Intercluster compound between a tetrakis{triphenylphosphinegold(I)}oxonium cation and a keggin polyoxometalate (POM): formation during the course of carboxylate elimination of a monomeric triphenylphosphinegold(I) carboxylate in the presence of POMs. , 2010, Inorganic chemistry.

[40]  Quan‐Ming Wang,et al.  Intensely luminescent gold(I)-silver(I) cluster with hypercoordinated carbon. , 2009, Journal of the American Chemical Society.

[41]  M. Gimeno The Chemistry of Gold , 2009 .

[42]  J. Ni,et al.  Luminescent groups 10 and 11 heteropolynuclear complexes based on thiolate or alkynyl ligands , 2009 .

[43]  P. Toullec,et al.  Enantioselective Platinum-Catalyzed Tandem Hydroarylation-Cycloisomerization of 1,6-Enynes , 2008 .

[44]  A. Echavarren,et al.  Gold(I)-catalyzed intermolecular addition of carbon nucleophiles to 1,5- and 1,6-enynes. , 2008, The Journal of organic chemistry.

[45]  A. Laguna,et al.  Chalcogenide centred gold complexes. , 2008, Chemical Society reviews.

[46]  K. Houk,et al.  Gold-catalyzed cycloisomerization of 1,5-allenynes via dual activation of an ene reaction. , 2008, Journal of the American Chemical Society.

[47]  D. Cárdenas,et al.  Gold(I)-catalyzed intramolecular [4+2] cycloadditions of arylalkynes or 1,3-enynes with alkenes: scope and mechanism. , 2008, Journal of the American Chemical Society.

[48]  A. Echavarren,et al.  Gold(I)-catalysed arylation of 1,6-enynes: different site reactivity of cyclopropyl gold carbenes. , 2007, Chemical communications.

[49]  P. Toullec,et al.  Room-temperature Au(I)-catalyzed C-C bond formation through a tandem Friedel-Crafts-type addition/carbocyclization reaction. , 2006, Angewandte Chemie.

[50]  A. Laguna,et al.  Mesitylgold(I) and silver(I) perfluorocarboxylates as precursors of supramolecular Au/Ag systems , 2006 .

[51]  C. Che,et al.  Structural and spectroscopic evidence for weak metal-metal interactions and metal-substrate exciplex formations in d10 metal complexes , 2005 .

[52]  A. Echavarren,et al.  Intramolecular [4 + 2] cycloadditions of 1,3-enynes or arylalkynes with alkenes with highly reactive cationic phosphine Au(I) complexes. , 2005, Journal of the American Chemical Society.

[53]  A. Willis,et al.  SYNTHESIS AND STRUCTURE OF AU5(C6H4PPH2)4+ : A CYCLOAURATED CATION CONTAINING A PAIR OF IPSO-CARBON-DIGOLD INTERACTIONS , 1997 .

[54]  H. Schmidbaur,et al.  Synthesis of the gold analogue of the elusive doubly protonated water molecule , 1995, Nature.

[55]  H. Schmidbaur,et al.  „Aurophilie”︁ als Konsequenz relativistischer Effekte: Das Hexakis(triphenylphosphanaurio)methan‐Dikation [(Ph3PAu)6C]2⊕ , 1988 .

[56]  F. Scherbaum,et al.  “Aurophilicity” as a Consequence of Relativistic Effects: The Hexakis(triphenylphosphaneaurio)methane Dication [(Ph3PAu)6C]2⊕ , 1988 .

[57]  S. Bhargava,et al.  Dinuclear Complexes of Gold(I) Containing Bridging Cyclometalated Arylphosphane or Arylarsane Ligands , 1987 .

[58]  M. A. Bennett,et al.  Zweikernige Gold(I)-Komplexe mit brückenbildenden cyclometallierten Arylphosphan- oder Arylarsan-Liganden , 1987 .

[59]  D. Mingos,et al.  Synthesis and structural characterisation of hexakis(triphenyl phosphine)hexagold(2+) nitrate, [Au6(PPh3)6][NO3]2, and related clusters with edgesharing bitetrahedral geometries , 1986 .

[60]  D. A. Lemenovskii,et al.  TRIS(TRIPHENYLPHOSPHINEGOLD)OXONIUM SALTS , 1974 .