A Bayesian approach to the detection of gross errors based on posterior probability

Existing methods for gross error detection, based on the mean shift model or the variance inflation model, have hardly considered or taken advantage of the potential prior information on the unknown parameters. This paper puts forward a Bayesian approach for gross error detection when prior information on the unknown parameters is available. Firstly, based on the basic principle of Bayesian statistical inference, the Bayesian method—posterior probability method—for the detection of gross errors is established. Secondly, considering either non-informative priors or normal-gamma priors on the unknown parameters, the computational formula of the posterior probability is given for both the mean shift model and the variance inflation model, respectively, under the condition of unequal weight and independent observations. Finally, as an example, a triangulation network is computed and analyzed, which shows that the method given here is feasible.

[1]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[2]  Xu Peiliang,et al.  On robust estimation with correlated observations , 1989 .

[3]  Peiliang Xu,et al.  A Simulation Study of Smoothness Methods In Recovery of Regional Gravity Fields , 1994 .

[4]  Peiliang Xu Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness , 2005 .

[5]  J. Bossler Bayesian inference in geodesy , 1972 .

[6]  U. Ethrog STATISTICAL TEST OF SIGNIFICANCE FOR TESTING OUTLYING OBSERVATIONS , 1991 .

[7]  Tianhe Xu,et al.  Robust estimator for correlated observations based on bifactor equivalent weights , 2002 .

[8]  Peiliang Xu,et al.  The value of minimum norm estimation of geopotential fields , 1992 .

[9]  Lyle D. Broemeling,et al.  Bayesian Analysis of Linear Models. , 1986 .

[10]  Seymour Geisser,et al.  Influential observations, diagnostics and discovery tests , 1987 .

[11]  I. Guttman,et al.  Comparing probabilistic methods for outlier detection in linear models , 1993 .

[12]  B Schaffrin,et al.  On outlier identification in geodetic networks using principal component analysis , 1986 .

[13]  D. F. Andrews,et al.  A Robust Method for Multiple Linear Regression , 1974 .

[14]  Xiaoli Ding,et al.  Multiple outlier detection by evaluating redundancy contributions of observations , 1996 .

[15]  Yang Yuanxi,et al.  Robust bayesian estimation , 1991 .

[16]  James O. Berger Statistical Decision Theory , 1980 .

[17]  Approximating the Bayesian estimate of the standard deviation in a linear model , 1987 .

[18]  Rudolf Dutter,et al.  Care and Handling of Univariate Outliers in the General Linear Model to Detect Spuriosity- A , 1978 .

[19]  Estimating crustal deformations from a combination of baseline measurements and geophysical models , 1983 .

[20]  Rock Santerre,et al.  Improvement of GPS phase ambiguity resolution using prior height information as a quasi-observation. , 2002 .

[21]  G. C. Tiao,et al.  A bayesian approach to some outlier problems. , 1968, Biometrika.

[22]  M. West Outlier Models and Prior Distributions in Bayesian Linear Regression , 1984 .

[23]  F. W. O. Aduol,et al.  ROBUST GEODETIC PARAMETER ESTIMATION THROUGH ITERATIVE WEIGHTING , 1994 .

[24]  K. Chaloner,et al.  A Bayesian approach to outlier detection and residual analysis , 1988 .

[25]  Serif Hekimoglu,et al.  Finite Sample Breakdown Points of Outlier Detection Procedures , 1997 .

[26]  Byron D. Tapley,et al.  Robust estimation of systematic errors of satellite laser range , 1999 .

[27]  R. Rummel,et al.  Generalized ridge regression with applications in determination of potential fields , 1994 .

[28]  B. Schaffrin An alternative approach to robust collocation , 1989 .

[29]  F. Sansò,et al.  The Bayesian approach applied to GPS ambiguity resolution. A mixture model for the discrete–real ambiguities alternative , 2002 .

[30]  L. Wasserman,et al.  Bayesian analysis of outlier problems using the Gibbs sampler , 1991 .

[31]  Peiliang Xu,et al.  Consequences of constant parameters and confidence intervals of robust estimation , 1993 .