Fuzzy Markovian Segmentation in Application of Magnetic Resonance Images

In this paper, we present a fuzzy Markovian method for brain tissue segmentation from magnetic resonance images. Generally, there are three main brain tissues in a brain dataset: gray matter, white matter, and cerebrospinal fluid. However, due to the limited resolution of the acquisition system, many voxels may be composed of multiple tissue types (partial volume effects). The proposed method aims at calculating a fuzzy membership in each voxel to indicate the partial volume degree, which is statistically modeled. Since our method is unsupervised, it first estimates the parameters of the fuzzy Markovian random field model using a stochastic gradient algorithm. The fuzzy Markovian segmentation is then performed automatically. The accuracy of the proposed method is quantitatively assessed on a digital phantom using an absolute average error and qualitatively tested on real MRI brain data. A comparison with the widely used fuzzy C-means algorithm is carried out to show numerous advantages of our method.

[1]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[2]  P. Santago,et al.  Quantification of MR brain images by mixture density and partial volume modeling , 1993, IEEE Trans. Medical Imaging.

[3]  J G Hennessey,et al.  Reliability and validity of an algorithm for fuzzy tissue segmentation of MRI. , 1998, Journal of computer assisted tomography.

[4]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Max A. Viergever,et al.  Probabilistic Multiscale Image Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  William H. Press,et al.  Numerical recipes in C , 2002 .

[7]  Supun Samarasekera,et al.  Fuzzy connectedness and object definition , 1995, Medical Imaging.

[8]  Supun Samarasekera,et al.  Multiple sclerosis lesion quantification using fuzzy-connectedness principles , 1997, IEEE Transactions on Medical Imaging.

[9]  Alan C. Evans,et al.  BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .

[10]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Mohamed-Jalal Fadili,et al.  Brain tissue classification of magnetic resonance images using partial volume modeling , 2000, IEEE Transactions on Medical Imaging.

[12]  Wojciech Pieczynski,et al.  Parameter Estimation in Hidden Fuzzy Markov Random Fields and Image Segmentation , 1997, CVGIP Graph. Model. Image Process..

[13]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[14]  Arvid Lundervold,et al.  Multispectral analysis of the brain using magnetic resonance imaging , 1994, IEEE Trans. Medical Imaging.

[15]  A W Toga,et al.  Quantification of white matter and gray matter volumes from T1 parametric images using fuzzy classifiers , 1996, Journal of magnetic resonance imaging : JMRI.

[16]  Koenraad Van Leemput,et al.  Automated model-based tissue classification of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[17]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[18]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[19]  Sridhar Lakshmanan,et al.  Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  J Y Boire,et al.  Tissue segmentation on MR images of the brain by possibilistic clustering on a 3D wavelet representation , 2000, Journal of magnetic resonance imaging : JMRI.

[21]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[22]  Cyril Jaggi,et al.  Segmentation par methode markovienne de l'encephale humain en imagerie par resonance magnetique : theorie, mise en uvre et evaluation , 1998 .

[23]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Ron Kikinis,et al.  Markov random field segmentation of brain MR images , 1997, IEEE Transactions on Medical Imaging.

[25]  L. Younes Parametric Inference for imperfectly observed Gibbsian fields , 1989 .

[26]  Jongwon Kim,et al.  Volumetric object reconstruction using the 3D-MRF model-based segmentation [magnetic resonance imaging] , 1997, IEEE Transactions on Medical Imaging.

[27]  Jerry L. Prince,et al.  Adaptive fuzzy segmentation of magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[28]  P A Narayana,et al.  Volumetric analysis of white matter, gray matter, and CSF using fractional volume analysis , 1998, Magnetic resonance in medicine.

[29]  M. Brandt,et al.  Estimation of CSF, white and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images. , 1994, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[30]  Marinette Revenu,et al.  Knowledge-based segmentation and labeling of brain structures from MRI images , 2001, Pattern Recognit. Lett..

[31]  Josiane Zerubia,et al.  Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood , 1999, IEEE Trans. Image Process..

[32]  Mohamed-Jalal Fadili,et al.  Phantom-based performance evaluation: Application to brain segmentation from magnetic resonance images , 2000, Medical Image Anal..

[33]  M. Revenu,et al.  MRI geometric distortion: A simple approach to correcting the effects of non‐linear gradient fields , 1999, Journal of magnetic resonance imaging : JMRI.

[34]  Ronald J. Jaszczak,et al.  Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data , 1997, IEEE Transactions on Medical Imaging.

[35]  David H. Laidlaw,et al.  Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms , 1997, IEEE Transactions on Medical Imaging.

[36]  Jayaram K. Udupa,et al.  Scale-Based Fuzzy Connected Image Segmentation: Theory, Algorithms, and Validation , 2000, Comput. Vis. Image Underst..

[37]  C. Metz ROC Methodology in Radiologic Imaging , 1986, Investigative radiology.