logcondens: Computations Related to Univariate Log-Concave Density Estimation
暂无分享,去创建一个
[1] A. M. Hilliard. AFFILIATION , 1910 .
[2] A. Prékopa. Logarithmic concave measures with applications to stochastic programming , 1971 .
[3] Geoffrey S. Watson,et al. Distribution Theory for Tests Based on the Sample Distribution Function , 1973 .
[4] Philip E. Gill,et al. Practical optimization , 1981 .
[5] B. Silverman,et al. On the Estimation of a Probability Density Function by the Maximum Penalized Likelihood Method , 1982 .
[6] Carlos Jaschek,et al. The Bright Star Catalogue , 1982 .
[7] Leslie Lamport,et al. Latex : A Document Preparation System , 1985 .
[8] J. Wellner,et al. Information Bounds and Nonparametric Maximum Likelihood Estimation , 1992 .
[9] L. Birge,et al. Estimation of unimodal densities without smoothness assumptions , 1997 .
[10] Geurt Jongbloed,et al. The Iterative Convex Minorant Algorithm for Nonparametric Estimation , 1998 .
[11] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[12] Friedrich Leisch,et al. Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis , 2002, COMPSTAT.
[13] 池内 健二,et al. Document preparation system , 2006 .
[14] Guenther Walther,et al. Clustering with mixtures of log-concave distributions , 2007, Comput. Stat. Data Anal..
[15] K. Rufibach. Computing maximum likelihood estimators of a log-concave density function , 2007 .
[16] Kaspar Rufibach,et al. Active Set and EM Algorithms for Log-Concave Densities Based on Complete and Censored Data , 2007, 0707.4643.
[17] M. Cule,et al. Maximum likelihood estimation of a multi‐dimensional log‐concave density , 2008, 0804.3989.
[18] S. Geer,et al. Multivariate log-concave distributions as a nearly parametric model , 2008, Am. Math. Mon..
[19] J. Leeuw,et al. Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods , 2009 .
[20] Robert B. Gramacy,et al. Maximum likelihood estimation of a multivariate log-concave density , 2010 .
[21] J. Wellner,et al. Limit Distribution Theory for Maximum Likelihood Estimation of a Log-Concave Density. , 2007, Annals of statistics.
[22] G. Walther. Inference and Modeling with Log-concave Distributions , 2009, 1010.0305.
[23] R. Koenker,et al. QUASI-CONCAVE DENSITY ESTIMATION , 2010, 1007.4013.
[24] Kaspar Rufibach,et al. An active set algorithm to estimate parameters in generalized linear models with ordered predictors , 2009, Comput. Stat. Data Anal..
[25] Jon A Wellner,et al. NONPARAMETRIC ESTIMATION OF MULTIVARIATE CONVEX-TRANSFORMED DENSITIES. , 2009, Annals of statistics.