logcondens: Computations Related to Univariate Log-Concave Density Estimation

Maximum likelihood estimation of a log-concave density has attracted considerable attention over the last few years. Several algorithms have been proposed to estimate such a density. Two of those algorithms, an iterative convex minorant and an active set algorithm, are implemented in the R package logcondens. While these algorithms are discussed elsewhere, we describe in this paper the use of the logcondens package and discuss functions and datasets related to log-concave density estimation contained in the package. In particular, we provide functions to (1) compute the maximum likelihood estimate (MLE) as well as a smoothed log-concave density estimator derived from the MLE, (2) evaluate the estimated density, distribution and quantile functions at arbitrary points, (3) compute the characterizing functions of the MLE, (4) sample from the estimated distribution, and finally (5) perform a two-sample permutation test using a modified Kolmogorov-Smirnov test statistic. In addition, logcondens makes two datasets available that have been used to illustrate log-concave density estimation.

[1]  A. M. Hilliard AFFILIATION , 1910 .

[2]  A. Prékopa Logarithmic concave measures with applications to stochastic programming , 1971 .

[3]  Geoffrey S. Watson,et al.  Distribution Theory for Tests Based on the Sample Distribution Function , 1973 .

[4]  Philip E. Gill,et al.  Practical optimization , 1981 .

[5]  B. Silverman,et al.  On the Estimation of a Probability Density Function by the Maximum Penalized Likelihood Method , 1982 .

[6]  Carlos Jaschek,et al.  The Bright Star Catalogue , 1982 .

[7]  Leslie Lamport,et al.  Latex : A Document Preparation System , 1985 .

[8]  J. Wellner,et al.  Information Bounds and Nonparametric Maximum Likelihood Estimation , 1992 .

[9]  L. Birge,et al.  Estimation of unimodal densities without smoothness assumptions , 1997 .

[10]  Geurt Jongbloed,et al.  The Iterative Convex Minorant Algorithm for Nonparametric Estimation , 1998 .

[11]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[12]  Friedrich Leisch,et al.  Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis , 2002, COMPSTAT.

[13]  池内 健二,et al.  Document preparation system , 2006 .

[14]  Guenther Walther,et al.  Clustering with mixtures of log-concave distributions , 2007, Comput. Stat. Data Anal..

[15]  K. Rufibach Computing maximum likelihood estimators of a log-concave density function , 2007 .

[16]  Kaspar Rufibach,et al.  Active Set and EM Algorithms for Log-Concave Densities Based on Complete and Censored Data , 2007, 0707.4643.

[17]  M. Cule,et al.  Maximum likelihood estimation of a multi‐dimensional log‐concave density , 2008, 0804.3989.

[18]  S. Geer,et al.  Multivariate log-concave distributions as a nearly parametric model , 2008, Am. Math. Mon..

[19]  J. Leeuw,et al.  Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods , 2009 .

[20]  Robert B. Gramacy,et al.  Maximum likelihood estimation of a multivariate log-concave density , 2010 .

[21]  J. Wellner,et al.  Limit Distribution Theory for Maximum Likelihood Estimation of a Log-Concave Density. , 2007, Annals of statistics.

[22]  G. Walther Inference and Modeling with Log-concave Distributions , 2009, 1010.0305.

[23]  R. Koenker,et al.  QUASI-CONCAVE DENSITY ESTIMATION , 2010, 1007.4013.

[24]  Kaspar Rufibach,et al.  An active set algorithm to estimate parameters in generalized linear models with ordered predictors , 2009, Comput. Stat. Data Anal..

[25]  Jon A Wellner,et al.  NONPARAMETRIC ESTIMATION OF MULTIVARIATE CONVEX-TRANSFORMED DENSITIES. , 2009, Annals of statistics.