High-precision 14C measurements demonstrate production of in situ cosmogenic 14CH4 and rapid loss of in situ cosmogenic 14CO in shallow Greenland firn

[1]  V. Petrenko,et al.  In situ cosmogenic radiocarbon production and 2‐D ice flow line modeling for an Antarctic blue ice area , 2012 .

[2]  J. Jouzel,et al.  Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland , 2011 .

[3]  A. Nesterenok,et al.  Radiocarbon in the Antarctic ice: The formation of the cosmic ray muon component at large depths , 2010 .

[4]  V. Brovkin,et al.  Ocean methane hydrates as a slow tipping point in the global carbon cycle , 2009, Proceedings of the National Academy of Sciences.

[5]  C. Fröhlich,et al.  Total solar irradiance during the Holocene , 2009 .

[6]  C. Berndt,et al.  Escape of methane gas from the seabed along the West Spitsbergen continental margin , 2009 .

[7]  B. Jacobsen,et al.  Taking the pulse of the Sun during the Holocene by joint analysis of 14C and 10Be , 2009 .

[8]  Quan Hua,et al.  14CH4 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources , 2009, Science.

[9]  R. Weiss,et al.  A novel method for obtaining very large ancient air samples from ablating glacial ice for analyses of methane radiocarbon , 2008, Journal of Glaciology.

[10]  J. Severinghaus,et al.  Pleistocene ice and paleo-strain rates at Taylor Glacier, Antarctica , 2007, Quaternary Research.

[11]  L. Smith,et al.  Methane bubbling from northern lakes: present and future contributions to the global methane budget , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Harro A. J. Meijer,et al.  Radiocarbon analyses along the EDML ice core in Antarctica , 2007 .

[13]  G. Schmidt,et al.  Modeling production and climate‐related impacts on 10Be concentration in ice cores , 2006 .

[14]  V. Petrenko,et al.  Gas records from the West Greenland ice margin covering the Last Glacial Termination: a horizontal ice core , 2005 .

[15]  Nathaniel A. Lifton,et al.  Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications [rapid communication] , 2005 .

[16]  D. Etheridge,et al.  Unexpected Changes to the Global Methane Budget over the Past 2000 Years , 2005, Science.

[17]  D. Pollard,et al.  Evidence for large century time-scale changes in solar activity in the past 32 Kyr, based on in-situ cosmogenic 14C in ice at Summit, Greenland , 2005 .

[18]  T. Stocker,et al.  Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium , 2005 .

[19]  Q. Hua,et al.  The ANTARES AMS facility at ANSTO , 2004 .

[20]  C. Veen,et al.  Radiocarbon analysis of the EPICA Dome C ice core: no in situ 14C from the firn observed , 2004 .

[21]  S. Ivy‐Ochs,et al.  Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons , 2002 .

[22]  P. Kubik,et al.  Production of selected cosmogenic radionuclides by muons 1. Fast muons , 2002 .

[23]  V. Levchenko,et al.  Assessment of “storage correction” required for in situ 14CO production in air sample cylinders , 2002 .

[24]  K. van der Borg,et al.  In situ produced 14C by cosmic ray muons in ablating Antarctic ice , 2002 .

[25]  J. Jouzel,et al.  Record of cosmogenic in situ produced 14C in Vostok and Taylor Dome ice samples: Implications for strong role of wind ventilation processes , 2001 .

[26]  Y. Fujii,et al.  A Greenland ice core record of low molecular weight dicarboxylic acids, ketocarboxylic acids, and α‐dicarbonyls: A trend from Little Ice Age to the present (1540 to 1989 A.D.) , 2001 .

[27]  P. Holmlund,et al.  Very little in situ produced radiocarbon retained in accumulating Antarctic ice , 2000 .

[28]  Q. Hua,et al.  In search of in-situ radiocarbon in Law Dome ice and firn , 2000 .

[29]  G. Burr,et al.  On the characteristics of cosmogenic in situ 14C in some GISP2 Holocene and late glacial ice samples , 2000 .

[30]  J. Masarik,et al.  Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere , 1999 .

[31]  T. Cerling,et al.  Cosmogenic 14C in carbonate rocks , 1999 .

[32]  D. Raynaud,et al.  Ice core record of CO variations during the last two millennia: atmospheric implications and chemical interactions within the Greenland ice , 1998 .

[33]  G. Burr,et al.  Measurements of in situ 14C concentrations in Greenland Ice Sheet Project 2 ice covering a 17‐kyr time span: Implications to ice flow dynamics , 1997 .

[34]  Q. Hua,et al.  MEASUREMENTS OF THE 14CO2 BOMB PULSE IN FIRN AND ICE AT LAW DOME, ANTARCTICA , 1997 .

[35]  D. Etheridge,et al.  The 14C “bomb spike” determines the age spread and age of CO2 in Law Dome firn and ice , 1996 .

[36]  M. Legrand,et al.  Light carboxylic acids in Greenland ice: A record of past forest fires and vegetation emissions from the boreal zone , 1996 .

[37]  J. Oerlemans,et al.  Dry extraction of 14CO2 and 14CO from Antarctic ice , 1994 .

[38]  P. Mayewski,et al.  Measurements of cosmic-ray-produced 14C in firn and ice from antarctica , 1994 .

[39]  J. Oerlemans,et al.  From 14C/12C measurements towards radiocarbon dating of ice , 1994 .

[40]  C. Brenninkmeijer Measurement of the abundance of 14CO in the atmosphere and the 13C/12C and 18O/16O ratio of atmospheric CO with applications in New Zealand and Antarctica , 1993 .

[41]  B. Stauffer,et al.  The age of the air in the firn and the ice at Summit, Greenland , 1993 .

[42]  H. Oerter,et al.  Progress in 14C dating of ice at Utrecht , 1990 .

[43]  D. Donahue,et al.  AMS carbon-14 dating of ice: progress and future prospects , 1990 .

[44]  J. Beer,et al.  Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core , 1988, Nature.

[45]  K. Nishiizumi,et al.  In situ cosmogenic 3H, 14C, and 10Be for determining the net accumulation and ablation rates of ice sheets , 1987 .

[46]  M. Suter,et al.  14C dating of polar ice , 1984 .

[47]  T. Norris,et al.  Ages and composition of gas trapped in Allan Hills and Byrd core ice , 1982 .

[48]  I. M. Evans The reactions of low energy ¹⁴C⁺ and ¹⁴CO⁺ ion beams with ice , 1970 .

[49]  Hans E. Suess,et al.  Secular variations of the cosmic-ray-produced Carbon 14 in the atmosphere and their interpretations , 1965 .

[50]  A. Nesterenok,et al.  In situ formation of cosmogenic 14C by cosmic ray nucleons in polar ice , 2012 .

[51]  J. Mühle,et al.  A New Method for Analyzing 14C of Methane in Ancient Air Extracted from Glacial Ice , 2008, Radiocarbon.

[52]  G. Hoffmann,et al.  Diffusion of stable isotopes in polar firn and ice : the isotope effect in firn diffusion , 2000 .

[53]  B. Stauffer,et al.  Reconstructing past atmospheric CO2 concentration based on ice-core analyses: open questions due to in situ production of CO2 in the ice , 2000, Journal of Glaciology.

[54]  A. T. Wilson Application of AMS 14C Dating to Ice Core Research , 1995, Radiocarbon.

[55]  K. van der Borg,et al.  A Correction for In-Situ 14C in Antarctic Ice with 14CO , 1995, Radiocarbon.

[56]  D. Donahue,et al.  AMS Radiocarbon Dating of Ice: Validity of the Technique and the Problem of Cosmogenic In-Situ Production in Polar Ice Cores , 1992, Radiocarbon.

[57]  D. Donahue,et al.  Polar ice ablation rates measured using in situ cosmogenic 14C , 1990, Nature.

[58]  B. Stauffer,et al.  Air Mixing in Firn and the Age of the Air at Pore Close-Off , 1988, Annals of Glaciology.

[59]  M. Suter,et al.  Dating Polar Ice by 14C Accelerator Mass Spectrometry , 1986, Radiocarbon.

[60]  K. Rossler,et al.  Hot atoms in cosmic chemistry. , 1984, Advances in space research : the official journal of the Committee on Space Research.

[61]  Michael M. Herron,et al.  Firn Densification: An Empirical Model , 1980, Journal of Glaciology.

[62]  M. Stuiver Workshop On 14C Data Reporting , 1980, Radiocarbon.

[63]  M. Stuiver,et al.  Discussion Reporting of 14C Data , 1977, Radiocarbon.