A modified Jacobi preconditioner for solving ill‐conditioned Biot's consolidation equations using symmetric quasi‐minimal residual method

SUMMARY This paper identi"es imbalanced columns (or rows) as a signi"cant source of ill-conditioning in the preconditioned coe$cient matrix using the standard Jacobi preconditioner, for "nite element solution of Biot's consolidation equations. A simple and heuristic preconditioner is proposed to reduce this source of ill-conditioning. The proposed preconditioner modi"es the standard Jacobi preconditioner by scaling the excess pore pressure degree-of-freedoms in the standard Jacobi preconditioner with appropriate factors. The performance of such preconditioner is examined using the symmetric quasi-minimal residual method. To alleviate storage requirements, element-by-element iterative strategies are implemented. Numerical experiment results show that the proposed preconditioner reduces both the number of iteration and CPU execution time signi"cantly as compared with the standard Jacobi preconditioner. Copyright 2001John Wiley & Sons, Ltd.

[1]  I. Fried,et al.  More on gradient iterative methods in finite- element analysis. , 1969 .

[2]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[3]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[4]  D. V. Griffiths,et al.  Programming the finite element method , 1982 .

[5]  R. Freund Preconditioning of Symmetric, but Highly Indefinite Linear Systems , 1997 .

[6]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[7]  M. B. Reed,et al.  ROBUST PRECONDITIONERS FOR LINEAR ELASTICITY FEM ANALYSES , 1997 .

[8]  Alan G. Bloodworth,et al.  Three dimensional analysis of building settlement caused by shaft construction , 1999 .

[9]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[10]  T. Hughes,et al.  An element-by-element solution algorithm for problems of structural and solid mechanics , 1983 .

[11]  T. Manteuffel An incomplete factorization technique for positive definite linear systems , 1980 .

[12]  Ian Smith,et al.  A general purpose system for finite element analyses in parallel , 2000 .

[13]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[14]  A. Jennings,et al.  The solution of sparse linear equations by the conjugate gradient method , 1978 .

[15]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[16]  M. A. Ajiz,et al.  A robust incomplete Choleski‐conjugate gradient algorithm , 1984 .

[17]  Thomas J. R. Hughes,et al.  Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies , 1985 .

[18]  G. Golub,et al.  Iterative solution of linear systems , 1991, Acta Numerica.

[19]  D. O’Leary,et al.  Generalized conjugate gradient method for the numerical solution of elliptic partial differential equations. [Solution of sparse, symmetric, positive-definite systems of linear equations arising from discretization of boundary-value problems for elliptic partial differential equations] , 1976 .

[20]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[21]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[22]  Thomas J. R. Hughes,et al.  LARGE-SCALE VECTORIZED IMPLICIT CALCULATIONS IN SOLID MECHANICS ON A CRAY X-MP/48 UTILIZING EBE PRECONDITIONED CONJUGATE GRADIENTS. , 1986 .

[23]  Beresford N. Parlett,et al.  Element Preconditioning Using Splitting Techniques , 1985 .

[24]  C. Micchelli,et al.  Polynomial Preconditioners for Conjugate Gradient Calculations , 1983 .

[25]  M. Papadrakakis,et al.  Improving the efficiency of incomplete Choleski preconditionings , 1991 .

[26]  M. Papadrakakis,et al.  An effective superelement-by-superelement solution method for large finite element computations , 1991 .

[27]  E. L. Stanton,et al.  Developments in structural analysis by direct energy minimization. , 1968 .

[28]  R. Freund,et al.  A new Krylov-subspace method for symmetric indefinite linear systems , 1994 .

[29]  Y. Saad,et al.  Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method , 1985 .

[30]  G. Meurant Computer Solution of Large Linear Systems , 1999 .

[31]  Jack Dongarra,et al.  Numerical Linear Algebra for High-Performance Computers , 1998 .

[32]  A. M. Britto,et al.  Critical State Soil Mechanics via Finite Elements , 1987 .