Learning in Potential Games

We consider repeated play of so-called potential games. Numerous modes of play are shown to yield Nash equilibrium in the long run. We point to procedures that can account for society-wide constraints concerning efficiency.

[1]  J. Robinson AN ITERATIVE METHOD OF SOLVING A GAME , 1951, Classics in Game Theory.

[2]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .

[3]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[4]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[5]  Yu. M. Ermol'ev,et al.  Nash equilibrium in n-person games , 1982 .

[6]  E. Cavazzuti Convergence of equilibria in the theory of games , 1986 .

[7]  Yuri Ermoliev,et al.  Numerical techniques for stochastic optimization , 1988 .

[8]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[9]  Marc Teboulle,et al.  Entropic Proximal Mappings with Applications to Nonlinear Programming , 1992, Math. Oper. Res..

[10]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[11]  Fernando Vega-Redondo,et al.  Competition and Culture in an Evolutionary Process of Equilibrium Selection: A Simple Example , 1993 .

[12]  Martin Posch,et al.  Cycling with a Generalized Urn Scheme and a Learning Algorithm for 2X2 Games , 1994 .

[13]  L. Shapley,et al.  Potential Games , 1994 .

[14]  L. Shapley,et al.  Fictitious Play Property for Games with Identical Interests , 1996 .

[15]  Sjur Didrik Flåm Approaches to economic equilibrium , 1996 .

[16]  Dean P. Foster,et al.  On the Nonconvergence of Fictitious Play in Coordination Games , 1998 .

[17]  D. Monderer,et al.  A 2£ 2 Game without the Fictitious Play Property ⁄ , 1996 .

[18]  Tomas Sjöström,et al.  Competition and the evolution of efficiency , 1996 .

[19]  D. Fudenberg,et al.  The Theory of Learning in Games , 1998 .

[20]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .