Uncertainty Quantification of State Boundaries in Thin Beam Buckling Experiments

[1]  N. Sugiura Further analysts of the data by akaike' s information criterion and the finite corrections , 1978 .

[2]  D. Madigan,et al.  Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .

[3]  N. Hjort,et al.  The Focused Information Criterion , 2003 .

[4]  Carl E. Rasmussen,et al.  Gaussian Processes for Machine Learning (GPML) Toolbox , 2010, J. Mach. Learn. Res..

[5]  Marc P. Mignolet,et al.  Identification and Updating of Uncertain Dynamic Models of a Flat Beam for Nonlinear Forced Response Predictions , 2011 .

[6]  Sankaran Mahadevan,et al.  Model Selection Among Physics-Based Models , 2013 .

[7]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[8]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[9]  H. Schlichting Boundary Layer Theory , 1955 .

[10]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[11]  Jerald B. Johnson,et al.  Model selection in ecology and evolution. , 2004, Trends in ecology & evolution.

[12]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[13]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[14]  David R. Anderson,et al.  Multimodel Inference , 2004 .

[15]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[16]  H. Jeffreys,et al.  The Theory of Probability , 1896 .

[17]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Shun-ichi Amari,et al.  Network information criterion-determining the number of hidden units for an artificial neural network model , 1994, IEEE Trans. Neural Networks.

[19]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[20]  Sankaran Mahadevan,et al.  Error Quantification and Confidence Assessment of Aerothermal Model Predictions for Hypersonic Aircraft (Preprint) , 2012 .

[21]  John Kosmatka Damping in Initially Stressed Elastically Unstable Structures , 2009 .

[22]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[23]  Sankaran Mahadevan,et al.  Bayesian Calibration of Coupled Aerothermal Models Using Time-Dependent Data , 2014 .

[24]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[25]  Robert L. Grossman,et al.  Proceedings of the 2002 SIAM International Conference on Data Mining , 2002 .

[26]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[27]  Remco R. Bouckaert,et al.  Probalistic Network Construction Using the Minimum Description Length Principle , 1993, ECSQARU.

[28]  D. Posada,et al.  Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.

[29]  Bryan Glaz,et al.  Uncertainty Propagation in Hypersonic Aerothermoelastic Analysis , 2010 .

[30]  B. Frieden Science from Fisher Information , 2004 .

[31]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[32]  D. Spiegelhalter,et al.  Bayes Factors and Choice Criteria for Linear Models , 1980 .

[33]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[34]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[35]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[36]  Sankaran Mahadevan,et al.  Bayesian Calibration of Aerothermal Models for Hypersonic Air Vehicles , 2013 .

[37]  G. Schwarz Estimating the Dimension of a Model , 1978 .