Chapter 3 Uniform Random Number Generation

Abstract This chapter covers the basic design principles and methods for uniform random number generators used in simulation. We also briefly mention the connections between these methods and those used to construct highly-uniform point sets for quasi-Monte Carlo integration. The emphasis is on the methods based on linear recurrences modulo a large integer, or modulo 2. This reflects the fact that their mathematical structure is much better understood than other types of generators, and that most generators used in simulation have that form. We discuss the main requirements for a good generator, theoretical figures of merit for certain classes of linear-type generators, implementation issues, nonlinear generators, and statistical testing.

[1]  Pierre L'Ecuyer,et al.  Distribution properties of multiply-with-c arry random number generators , 1997, Math. Comput..

[2]  R. Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two , 1965 .

[3]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[4]  Pierre L'Ecuyer,et al.  Lattice computations for random numbers , 2000, Math. Comput..

[5]  Pierre L'Ecuyer,et al.  Tables of maximally equidistributed combined LFSR generators , 1999, Math. Comput..

[6]  Pierre L’Ecuyer,et al.  Polynomial Integration Lattices , 2004 .

[7]  J. Banks,et al.  Handbook of Simulation , 1998 .

[8]  Ferenc Szidarovszky,et al.  Modeling uncertainty : an examination of stochastic theory, methods, and applications , 2002 .

[9]  Masanori Fushimi Increasing the Orders of Equidistribution of the Leading Bits of the Tausworthe Sequence , 1983, Inf. Process. Lett..

[10]  Pierre L'Ecuyer,et al.  Construction of Equidistributed Generators Based on Linear Recurrences Modulo 2 , 2002 .

[11]  Stefan Wegenkittl,et al.  A survey of quadratic and inversive congruential pseudorandom numbers , 1998 .

[12]  Jiirgen Eichenauer-Herrmann,et al.  Pseudorandom Number Generation by Nonlinear Methods , 1995 .

[13]  Mark Goresky,et al.  Efficient multiply-with-carry random number generators with maximal period , 2003, TOMC.

[14]  Pierre L'Ecuyer,et al.  On the Deng-Lin random number generators and related methods , 2004, Stat. Comput..

[15]  Russell R. Barton,et al.  Proceedings of the 2000 winter simulation conference , 2000 .

[16]  Fred J. Hickernell,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .

[17]  Pierre L'Ecuyer,et al.  Random Number Generators: Selection Criteria and Testing , 1998 .

[18]  Pierre L'Ecuyer,et al.  Combined generators with components from different families , 2003, Math. Comput. Simul..

[19]  Pierre L'Ecuyer,et al.  Random numbers for simulation , 1990, CACM.

[20]  P. L’Ecuyer,et al.  Structural properties for two classes of combined random number generators , 1990 .

[21]  Pierre L'Ecuyer,et al.  Software for uniform random number generation: distinguishing the good and the bad , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[22]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[23]  Pierre L'Ecuyer,et al.  Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..

[24]  J. P. R. Tootill,et al.  An Asymptotically Random Tausworthe Sequence , 1973, JACM.

[25]  Makoto Matsumoto,et al.  Getting rid of correlations among pseudorandom numbers: discarding versus tempering , 1999, TOMC.

[26]  Makoto Matsumoto,et al.  Twisted GFSR generators , 1992, TOMC.

[27]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[28]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[29]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[30]  Pierre L'Ecuyer,et al.  Maximally equidistributed combined Tausworthe generators , 1996, Math. Comput..

[31]  Pierre L'Ecuyer,et al.  A random number generator based on the combination of four LCGs , 1997 .

[32]  H. Niederreiter The Multiple-Recursive Matrix Method for Pseudorandom Number Generation , 1995 .

[33]  Harald Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2002 , 2004 .

[34]  Pierre L'Ecuyer,et al.  Efficient and portable combined Tausworthe random number generators , 1990, TOMC.

[35]  M. Luescher,et al.  A Portable High-quality Random Number Generator for Lattice Field Theory Simulations , 1993 .

[36]  P. L’Ecuyer,et al.  On the lattice structure of certain linear congruential sequences related to AWC/SWB generators , 1994 .

[37]  Pierre L'Ecuyer,et al.  Implementing a random number package with splitting facilities , 1991, TOMS.

[38]  Pierre L'Ecuyer,et al.  Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .

[39]  Peter Hellekalek,et al.  Empirical evidence concerning AES , 2003, TOMC.

[40]  J. Gentle Random number generation and Monte Carlo methods , 1998 .

[41]  Pierre L'Ecuyer,et al.  Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators , 1999, Oper. Res..

[42]  P. L’Ecuyer,et al.  Variance Reduction via Lattice Rules , 1999 .

[43]  Manuel Blum,et al.  A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..

[44]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[45]  Shu Tezuka,et al.  On the lattice structure of the add-with-carry and subtract-with-borrow random number generators , 1993, TOMC.

[46]  Pei-Chi Wu,et al.  Multiplicative, congruential random-number generators with multiplier ± 2k1 ± 2k2 and modulus 2p - 1 , 1997, TOMS.

[47]  Takuji Nishimura,et al.  Tables of 64-bit Mersenne twisters , 2000, TOMC.

[48]  Pierre L'Ecuyer,et al.  On the performance of birthday spacings tests with certain families of random number generators , 2001 .

[49]  Pierre L'Ecuyer,et al.  A search for good multiple recursive random number generators , 1993, TOMC.

[50]  Pierre L'Ecuyer,et al.  Uniform random number generation , 1994, Ann. Oper. Res..

[51]  Igor E. Shparlinski,et al.  Recent Advances in the Theory of Nonlinear Pseudorandom Number Generators , 2002 .

[52]  Pierre L'Ecuyer,et al.  Combined Multiple Recursive Random Number Generators , 1995, Oper. Res..

[53]  Makoto Matsumoto,et al.  Strong deviations from randomness in m-sequences based on trinomials , 1996, TOMC.

[54]  Makoto Matsumoto,et al.  Twisted GFSR generators II , 1994, TOMC.

[55]  P. L'Ecuyer,et al.  Fast combined multiple recursive generators with multipliers of the form a=/spl plusmn/2/sup q//spl plusmn/2/sup r/ , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).

[56]  S. Tezuka A UNIFIED VIEW OF LONG-PERIOD RANDOM NUMBER GENERATORS , 1994 .

[57]  Dennis K. J. Lin,et al.  Random Number Generation for the New Century , 2000 .

[58]  Francois Panneton Construction d'ensembles de points basee sur des recurrences lineaires dans un corps fini de caracteristique 2 pour la simulation Monte Carlo et l'integration quasi-Monte Carlo , 2004 .

[59]  T. Ala‐Nissila,et al.  Physical models as tests of randomness. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[60]  Aaldert Compagner,et al.  On the use of reducible polynomials as random number generators , 1993 .

[61]  Pierre L'Ecuyer,et al.  An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..

[62]  G. Marsaglia,et al.  A New Class of Random Number Generators , 1991 .

[63]  Pierre L'Ecuyer,et al.  Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..

[64]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[65]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[66]  Pierre L'Ecuyer,et al.  Beware of linear congruential generators with multipliers of the form a = ±2q ±2r , 1999, TOMS.

[67]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[68]  Lih-Yuan Deng,et al.  A system of high-dimensional, efficient, long-cycle and portable uniform random number generators , 2003, TOMC.

[69]  Pierre L'Ecuyer,et al.  Randomized Polynomial Lattice Rules for Multivariate Integration and Simulation , 2001, SIAM J. Sci. Comput..

[70]  Pierre L'Ecuyer,et al.  Random Number Generators Based on Linear Recurrences in F 2 w , 2003 .

[71]  Pierre L'Ecuyer,et al.  Sparse Serial Tests of Uniformity for Random Number Generators , 1998, SIAM J. Sci. Comput..

[72]  Pierre L'Ecuyer,et al.  Improved long-period generators based on linear recurrences modulo 2 , 2004, TOMS.

[73]  Pierre L'Ecuyer,et al.  An Object-Oriented Random-Number Package with Many Long Streams and Substreams , 2002, Oper. Res..

[74]  Yuichi Mori,et al.  Handbook of Computational Statistics , 2004 .