Reducing radiation dose in emergency computed tomography with automatic exposure control techniques

[1]  Mannudeep K Kalra,et al.  Detection of urinary tract stones at low-radiation-dose CT with z-axis automatic tube current modulation: phantom and clinical studies. , 2005, Radiology.

[2]  M. Kalra,et al.  Techniques and applications of automatic tube current modulation for CT. , 2004, Radiology.

[3]  Thomas L Toth,et al.  Sixteen-detector row CT of abdomen and pelvis: study for optimization of Z-axis modulation technique performed in 153 patients. , 2004, Radiology.

[4]  Thomas L Toth,et al.  Radiation from "extra" images acquired with abdominal and/or pelvic CT: effect of automatic tube current modulation. , 2004, Radiology.

[5]  Thomas L Toth,et al.  Comparison of Z-axis automatic tube current modulation technique with fixed tube current CT scanning of abdomen and pelvis. , 2004, Radiology.

[6]  M. Gaeta,et al.  Combined magnetic resonance urography and targeted helical CT in patients with renal colic: A new approach to reduce delivered dose , 2004, Journal of magnetic resonance imaging : JMRI.

[7]  P. Gevenois,et al.  Acute appendicitis: comparison of low-dose and standard-dose unenhanced multi-detector row CT. , 2004, Radiology.

[8]  U. Baum,et al.  Dosisautomatik bei der Mehrzeilenspiral-CT: Phantommessungen und klinische Ergebnisse , 2004 .

[9]  L. McCaig,et al.  National Hospital Ambulatory Medical Care Survey: 2002 emergency department summary. , 2004, Advance data.

[10]  M. Kalra,et al.  Strategies for CT radiation dose optimization. , 2004, Radiology.

[11]  T. Ptak,et al.  Radiation dose is reduced with a single-pass whole-body multi-detector row CT trauma protocol compared with a conventional segmented method: initial experience. , 2003, Radiology.

[12]  M. Kalra,et al.  Correlation of Patient Weight and Cross-Sectional Dimensions with Subjective Image Quality at Standard Dose Abdominal CT , 2003, Korean journal of radiology.

[13]  R. Doll,et al.  Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Kvitnitskaia-Ryzhova TIu,et al.  Molecular and cellular aspects of radiation hormesis in Drosophila melanogaster , 2003 .

[15]  T. Aaløkken,et al.  A new low-dose CT examination compared with standard-dose CT in the diagnosis of acute sinusitis , 2003, European Radiology.

[16]  J. Prekeges Radiation hormesis, or, could all that radiation be good for us? , 2003, Journal of nuclear medicine technology.

[17]  James H Thrall,et al.  Multi-detector row CT: radiation dose characteristics. , 2003, Radiology.

[18]  P. Gevenois,et al.  Low-dose unenhanced multidetector CT of patients with suspected renal colic. , 2003, AJR. American journal of roentgenology.

[19]  D. Frush,et al.  Helical CT of the body: a survey of techniques used for pediatric patients. , 2003, AJR. American journal of roentgenology.

[20]  James H Thrall,et al.  Clinical comparison of standard-dose and 50% reduced-dose abdominal CT: effect on image quality. , 2002, AJR. American journal of roentgenology.

[21]  Donald P. Frush,et al.  Pediatric CT: practical approach to diminish the radiation dose , 2002, Pediatric Radiology.

[22]  C. Suess,et al.  Dose optimization in pediatric CT: current technology and future innovations , 2002, Pediatric Radiology.

[23]  Jo-Anne Shepard,et al.  Standard-dose and 50%-reduced-dose chest CT: comparing the effect on image quality. , 2002, AJR. American journal of roentgenology.

[24]  Ulrich Baum,et al.  Dose reduction in CT examination of children by an attenuation-based on-line modulation of tube current (CARE Dose) , 2002, European Radiology.

[25]  Werner Bautz,et al.  Dosisreduktion bei der Spiral-CT: Detektion von Lungenrundherden mit und ohne anatomisch angepasster Röhrenstrommodulation , 2001 .

[26]  D. Brenner,et al.  Estimated risks of radiation-induced fatal cancer from pediatric CT. , 2001, AJR. American journal of roentgenology.

[27]  D A Pierce,et al.  Radiation-Related Cancer Risks at Low Doses among Atomic Bomb Survivors , 2000, Radiation research.

[28]  P. Parsons Energy, stress and the invalid linear no-threshold premise: a generalization illustrated by ionizing radiation , 2004, Biogerontology.

[29]  W. Kalender,et al.  [Automatic exposure control to reduce the dose in subsecond multislice spiral CT: phantom measurements and clinical results]. , 2004, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[30]  A. Vaiserman,et al.  [Molecular and cellular aspects of radiation hormesis in Drosophila melanogaster]. , 2003, TSitologiia i genetika.

[31]  Sue Mallonee,et al.  Injury surveillance. , 2003, Epidemiologic reviews.

[32]  J. Remy,et al.  Dose reduction in spiral CT angiography of thoracic outlet syndrome by anatomically adapted tube current modulation , 2001, European Radiology.

[33]  W. Kalender,et al.  [Dose reduction in spiral-CT: detection of pulmonary coin lesions with and without anatomically adjusted modulation of tube current]. , 2001, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[34]  H. Greess,et al.  Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions , 2000, European Radiology.

[35]  Holger Greess,et al.  Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers , 1999, European Radiology.

[36]  J. Koch,et al.  [Possibilities for dose reduction in coronal spiral CT of the mid-face area]. , 1998, Aktuelle Radiologie.