Design and Use of a Semantic Similarity Measure for Interoperability Among Agents

The capability to identify the sense of polysemic words, i.e. words that have multiple meanings, is an essential part of intelligent systems, e.g. when updating an agent’s beliefs during conversations. This process is also called Word Sense Disambiguation and is approached by applying semantic similarity measures. Within this work, we present an algorithm to create such a semantic similarity measure using marker passing, that: (1) generates a semantic network out of a concepts used e.g. in semantic service descriptions, (2) sends markers through the networks to tag sub-graphs that are of relevance, and (3) uses these markers to create a semantic similarity measure. We will discuss the properties of the algorithm, elaborate its performance, and discuss the lifted properties for the algorithm to be used in WSD. To evaluate our approach, we compare it to state of the art measures using the Rubinstein1965 dataset. It is shown, that our approach outperforms these state of the art measures.

[1]  Stan Szpakowicz,et al.  Roget's thesaurus and semantic similarity , 2012, RANLP.

[2]  Ming Zhou,et al.  Identifying Synonyms among Distributionally Similar Words , 2003, IJCAI.

[3]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[4]  Elia Bruni,et al.  Multimodal Distributional Semantics , 2014, J. Artif. Intell. Res..

[5]  David M. W. Powers,et al.  Measuring Semantic Similarity in the Taxonomy of WordNet , 2005, ACSC.

[6]  Sahin Albayrak,et al.  Are There Semantic Primes in Formal Languages? , 2014, DCAI.

[7]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[8]  Thad Hughes,et al.  Lexical Semantic Relatedness with Random Graph Walks , 2007, EMNLP.

[9]  A. A. Krizhanovsky,et al.  Related terms search based on WordNet / Wiktionary and its application in Ontology Matching , 2009, ArXiv.

[10]  Iryna Gurevych,et al.  Analysis of the Wikipedia Category Graph for NLP Applications , 2007 .

[11]  Yehoshua Bar-Hillel,et al.  The Present Status of Automatic Translation of Languages , 1960, Adv. Comput..

[12]  Ulrik Brandes,et al.  Pure spreading activation is pointless , 2009, CIKM.

[13]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[14]  Roman V. Yampolskiy,et al.  AI-Complete, AI-Hard, or AI-Easy - Classification of Problems in AI , 2012, MAICS.

[15]  W. John Wilbur,et al.  The automatic identification of stop words , 1992, J. Inf. Sci..

[16]  Christiane Fellbaum,et al.  Lexical Chains as Representations of Context for the Detection and Correction of Malapropisms , 1998 .

[17]  A. Wierzbicka Semantics: Primes and Universals , 1996 .

[18]  Evgeniy Gabrilovich,et al.  A word at a time: computing word relatedness using temporal semantic analysis , 2011, WWW.

[19]  Jérôme Euzenat,et al.  Ontology Matching: State of the Art and Future Challenges , 2013, IEEE Transactions on Knowledge and Data Engineering.

[20]  Roberto Navigli,et al.  From senses to texts: An all-in-one graph-based approach for measuring semantic similarity , 2015, Artif. Intell..

[21]  Nils Masuch,et al.  Multi-Agent System in Practice: When Research Meets Reality , 2016, AAMAS.

[22]  Nick Riemer,et al.  The Routledge handbook of semantics , 2015 .

[23]  Anna Wierzbicka,et al.  Semantic and lexical universals : theory and empirical findings , 1994 .

[24]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[25]  Carlo Strapparava,et al.  Corpus-based and Knowledge-based Measures of Text Semantic Similarity , 2006, AAAI.

[26]  Evgeniy Gabrilovich,et al.  Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis , 2007, IJCAI.

[27]  Roy Rada,et al.  Development and application of a metric on semantic nets , 1989, IEEE Trans. Syst. Man Cybern..

[28]  Iryna Gurevych,et al.  Using Wiktionary for Computing Semantic Relatedness , 2008, AAAI.

[29]  Eugene Charniak,et al.  A Neat Theory of Marker Passing , 1986, AAAI.

[30]  George A. Miller,et al.  Using Corpus Statistics and WordNet Relations for Sense Identification , 1998, CL.

[31]  Nancy Ide,et al.  Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art , 1998, Comput. Linguistics.

[32]  Ana M. García-Serrano,et al.  A novel family of IC-based similarity measures with a detailed experimental survey on WordNet , 2015, Eng. Appl. Artif. Intell..

[33]  Thomas Erl,et al.  SOA Principles of Service Design , 2007 .

[34]  Ehud Rivlin,et al.  Placing search in context: the concept revisited , 2002, TOIS.

[35]  Georgiana Dinu,et al.  Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors , 2014, ACL.

[36]  Abdelmajid Ben Hamadou,et al.  A new semantic relatedness measurement using WordNet features , 2013, Knowledge and Information Systems.

[37]  Thomas Erl,et al.  SOA Principles of Service Design (The Prentice Hall Service-Oriented Computing Series from Thomas Erl) , 2007 .

[38]  Eneko Agirre,et al.  Word Sense Disambiguation: Algorithms and Applications , 2007 .

[39]  Shi Bin,et al.  Measure Semantic Distance in WordNet Based on Directed Graph Search , 2009, 2009 International Conference on E-Learning, E-Business, Enterprise Information Systems, and E-Government.

[40]  Christopher D. Manning,et al.  Better Word Representations with Recursive Neural Networks for Morphology , 2013, CoNLL.

[41]  Bert Peeters Semantic and lexical universals in French , 1994 .

[42]  Iryna Gurevych,et al.  Wisdom of crowds versus wisdom of linguists – measuring the semantic relatedness of words , 2009, Natural Language Engineering.

[43]  Michael R. Berthold,et al.  Node Similarities from Spreading Activation , 2010, 2010 IEEE International Conference on Data Mining.

[44]  Sahin Albayrak,et al.  Formal Language Decomposition into Semantic Primes , 2014, DCAI 2014.

[45]  Ziqi Zhang,et al.  Recent advances in methods of lexical semantic relatedness – a survey , 2012, Natural Language Engineering.

[46]  John B. Goodenough,et al.  Contextual correlates of synonymy , 1965, CACM.

[47]  Ted Pedersen,et al.  Using WordNet-based Context Vectors to Estimate the Semantic Relatedness of Concepts , 2006 .

[48]  G. Miller,et al.  Contextual correlates of semantic similarity , 1991 .

[49]  Marvin Minsky,et al.  Logical Versus Analogical or Symbolic Versus Connectionist or Neat Versus Scruffy , 1991, AI Mag..

[50]  Fabio Crestani,et al.  Application of Spreading Activation Techniques in Information Retrieval , 1997, Artificial Intelligence Review.

[51]  Roberto Navigli,et al.  Word sense disambiguation: A survey , 2009, CSUR.

[52]  Eneko Agirre,et al.  A Study on Similarity and Relatedness Using Distributional and WordNet-based Approaches , 2009, NAACL.