A general analytical solution for the stochastic Milne problem using Karhunen–Loeve (K–L) expansion

Abstract This paper considers the solution of the stochastic integro-differential equation of Milne problem with random operator. The Pomraning–Eddington method is implemented to get a closed form solution deterministically. Relying on the spectral properties of the covariance function, the Karhunen–Loeve (K–L) expansion is used to represent the input stochastic process in the deterministic solution. This leads to an explicit expression for the solution process as a multivariate functional of a set of uncorrelated random variables. By using different distributions for these variables, the work is realized through computing the mean and the variance of the solution. The numerical results are found in agreement with those obtained in the literature.

[1]  N. Bouleau,et al.  Numerical methods for stochastic processes , 1993 .

[2]  E. A. Milne Radiative equilibrium in the outer layers of a star , 1921 .

[3]  Seifedine Kadry On the generalization of probabilistic transformation method , 2007, Appl. Math. Comput..

[4]  A. Hussein,et al.  Using FEM-RVT technique for solving a randomly excited ordinary differential equation with a random operator , 2007, Appl. Math. Comput..

[5]  M. El-Tawil,et al.  A proposed technique of SFEM on solving ordinary random differential equation , 2005, Appl. Math. Comput..

[6]  Magdy A. El-Tawil,et al.  The approximate solutions of some stochastic differential equations using transformations , 2005, Appl. Math. Comput..

[7]  Michał Kleiber,et al.  The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .

[8]  Erin D. Fichtl,et al.  The stochastic collocation method for radiation transport in random media , 2011 .

[9]  M. M. Selim,et al.  Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique , 2012, Appl. Math. Comput..

[10]  M. M. Selim The Milne problem in a continuous stochastic planar medium with Gaussian statistics , 2010 .

[11]  G. C. Pomraning,et al.  Linear Transport Theory , 1967 .

[12]  Masanobu Shinozuka,et al.  Simulation of Stochastic Fields by Statistical Preconditioning , 1990 .

[13]  R. Ghanem Higher Order Sensitivity of Heat Conduction Problems to Random Data Using the Spectral Stochastic Fi , 1999 .

[14]  M. Kac,et al.  An Explicit Representation of a Stationary Gaussian Process , 1947 .

[15]  Ali H. Nayfeh,et al.  Problems in Perturbation , 1985 .

[16]  M. A. E. Tawil THE APPLICATION OF WHEP TECHNIQUE ON STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS , 2013 .

[17]  M. El-Tawil,et al.  Stochastic beam equations under random dynamic loads , 2002 .

[18]  M. M. Selim,et al.  Solution of the stochastic transport equation of neutral particles with anisotropic scattering using RVT technique , 2009, Appl. Math. Comput..

[19]  R. H. Myers,et al.  Probability and Statistics for Engineers and Scientists , 1978 .

[20]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[21]  Sudarshan K. Loyalka,et al.  Milne’s half-space problem: A numerical solution of the related integral equation , 2008 .

[22]  M. M. Selim,et al.  A developed solution of the stochastic Milne problem using probabilistic transformations , 2010, Appl. Math. Comput..

[23]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[24]  M. M. R. Williams,et al.  Mathematical methods in particle transport theory , 1971 .

[25]  Abdel Razik Degheidy,et al.  A new technique for Milne’s problem with specular and diffuse reflecting boundary , 2010 .

[26]  Michel Loève,et al.  Probability Theory I , 1977 .

[27]  G. C. Pomraning The Milne problem in a statistical medium , 1989 .

[28]  The Pomraning-Eddington approximation to diffusion of light in turbid materials , 1994 .

[29]  M.M.R. Williams,et al.  Polynomial chaos functions and stochastic differential equations , 2006 .

[30]  E. F. Abdel Gawad,et al.  General stochastic oscillatory systems , 1993 .

[31]  M. El-Tawil,et al.  Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM) , 2008 .

[32]  M. M. Selim,et al.  Milne problem in stochastic plane medium with linear anisotropic scattering , 2000 .