The effects of the modification of the BST-system solid solutions with rare earth elements

[1]  S. V. Khasbulatov,et al.  The spinodal decomposition in the BST system , 2021 .

[2]  Zhi Tan,et al.  High performance BiFe0.9Co0.1O3 doped KNN-based lead-free ceramics for acoustic energy harvesting , 2021 .

[3]  Yingbang Yao,et al.  Enhanced electrocaloric effect at room temperature in Mn2+ doped lead-free (BaSr)TiO3 ceramics via a direct measurement , 2021, Journal of Advanced Ceramics.

[4]  Wen Chen,et al.  Thermally induced transitions and depolarization of Fe2O3 doped PMnS-PZN-PZT piezoelectric ceramics , 2021, Applied Physics A.

[5]  Yingbang Yao,et al.  Direct and indirect measurement of large electrocaloric effect in B2O3-ZnO glass modified Ba0.65Sr0.35TiO3 bulk ceramics , 2021 .

[6]  M. Zhang,et al.  Effects of Ag content and heat treatment on the microstructure and properties of SLMed AZ61 Mg–Al–Zn alloy , 2021, Applied Physics A.

[7]  Zongzheng Du,et al.  The electrical properties of low-temperature sintered 0.07Pb(Sb1/2Nb1/2)O3-0.93Pb(Zr Ti1−)O3 multilayer piezoceramic actuator , 2021 .

[8]  R. Meyer,et al.  Flexoelectric barium strontium titanate (BST) hydrophones , 2021, The Journal of the Acoustical Society of America.

[9]  P. Fromme,et al.  Measurement of the temperature-dependent output of lead zirconate titanate transducers. , 2021, Ultrasonics.

[10]  J. Zhai,et al.  Low-temperature sintering of KNN-based lead free ceramics , 2021 .

[11]  Satyanarayan Patel,et al.  Electrical conduction properties of the BZT–BST ceramics , 2020 .

[12]  Bhagyashree Mohanty,et al.  Dielectric, electrical and magnetic characteristics of BST modified BLFO lead free ceramic , 2020 .

[13]  Jingsong Liu,et al.  Temperature stability of lead-free BST-BZN relaxor ferroelectric ceramics for energy storage capacitors , 2020, Journal of Materials Science: Materials in Electronics.

[14]  I. Parinov,et al.  Multi-element ferroactive materials based on KNN-PZT compositions with fundamentally different physical properties , 2020, Heliyon.

[15]  Xiaoying Wang,et al.  Effect of Sintering Temperature on Low Frequency Response Properties of Ba0.6Sr0.4TiO3 Ceramic , 2019, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[16]  A. Pavelko,et al.  Features of the structure and macro responses in hard ferro piezoceramics based on the PZT system , 2018, Ceramics International.

[17]  Y. Sun,et al.  Tuning the ferroelectric transition and magnetic ordering by the polar Ba0.1Sr0.9TiO3 substitution in the multiferroic (1−x) Ba0.1Sr0.9TiO3 - xBiFeO3 (0.2 ≤ x ≤ 0.8) solid solution , 2018 .

[18]  J. Rödel,et al.  Requirements for the transfer of lead-free piezoceramics into application , 2018 .

[19]  S. Biryukov,et al.  Specific features of the ferroelectric state in two-layer barium strontium titanate-based heterostructures , 2018 .

[20]  L. A. Shilkina,et al.  Binary, Ternary and Four-Component Systems Based on Sodium Niobate: Phase Diagrams of States, the Role of the Number of Components and Defectiveness in the Formation of the Properties , 2017 .

[21]  S. V. Khasbulatov,et al.  Phase Pattern of Barium Strontium Titanate System and Dielectric Responses of Its Solid Solutions , 2017 .

[22]  N. F. Kartenko,et al.  Low permittivity ferroelectric composite ceramics for tunable applications , 2017 .

[23]  J. Bian,et al.  Dielectric and energy storage properties of Mn-doped Ba0.3Sr0.475 La0.12Ce0.03TiO3 dielectric ceramics , 2017 .

[24]  L. A. Shilkina,et al.  Phase formation and the formation of microstructures and macroscopic responses in BST ceramics , 2016 .

[25]  Sharon C Glotzer,et al.  Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials. , 2016, Physical review letters.

[26]  I. Kim,et al.  Large Electromechanical Response in Lead‐Free La‐Doped BNKT–BST Piezoelectric Ceramics , 2014 .

[27]  Hanxing Liu,et al.  Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics , 2014 .

[28]  L. Reznichenko,et al.  The PZT system (PbTixZr1−xO3, 0≤x≤1.0): The dependences of electrophysical properties of solid solutions on the electric field strength and component concentration (Part 5) , 2013 .

[29]  Chunrui Ma,et al.  Ferroelectric BaTiO3/SrTiO3 multilayered thin films for room-temperature tunable microwave elements , 2013, Nanoscale Research Letters.

[30]  Tomas Svensson,et al.  Disordered, strongly scattering porous materials as miniature multipass gas cells. , 2010, Physical review letters.

[31]  M. Tyunina,et al.  Nanoscale engineering of ferroelectric functionality , 2010 .

[32]  N. F. Kartenko,et al.  Low loss microwave ferroelectric ceramics for high power tunable devices , 2010 .

[33]  A. Dedyk,et al.  Electrically controlled BST-Mg ceramic components for applications in accelerator technology , 2009 .

[34]  A. Kozyrev,et al.  Observation of an anomalous correlation between permittivity and tunability of a doped (Ba,Sr)TiO3 ferroelectric ceramic developed for microwave applications , 2009 .

[35]  L. Reznichenko,et al.  Production and dielectric properties of lead-free ceramics with the formula [(Na0.5K0.5)1 − xLix](Nb1 − y − zTaySbz)O3 , 2009 .

[36]  V. Lemanov,et al.  Phenomenological theory of phase transitions in epitaxial Ba x Sr 1 − x TiO 3 thin films , 2008, 0812.0056.

[37]  S. Biryukov,et al.  Geometrical effects in nanodimensional epitaxial films of barium strontium titanate , 2007 .

[38]  S. Alpay,et al.  Interface effects in ferroelectric bilayers and heterostructures , 2007 .

[39]  S. Karmanenko,et al.  I-V and C-V characteristics of ceramic materials based on barium strontium titanate , 2006 .

[40]  V. Lemanov,et al.  Concentration phase diagram of BaxSr1_xTiO3 solid solutions , 2005, cond-mat/0512581.

[41]  E. A. Nenasheva a,et al.  High-Frequency Characteristics of (Ba,Sr)TiO3 Tunable Ceramics with Various Additives Intended for Accelerator Physics , 2005 .

[42]  D. Fuks,et al.  Ab initio thermodynamics of BacSr(1-c)TiO3solid solutions , 2005 .

[43]  A. Kanareykin,et al.  Tunable wakefield dielectric-filled accelerating structure , 2005 .

[44]  D. Tenne,et al.  Lattice dynamics in BaxSr1-xTiO3 thin films studied by Raman spectroscopy , 2004 .

[45]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[46]  S. Karmanenko,et al.  Frequency Dependence of Microwave Quality Factor of Doped BaxSr1 - xTiO3 Ferroelectric Ceramics , 2004 .

[47]  J. Jeon,et al.  Effect of SrTiO3 concentration and sintering temperature on microstructure and dielectric constant of Ba1−xSrxTiO3 , 2004 .

[48]  A. V. Borodin,et al.  Dielectric and Piezoelectric Properties of NaNbO3-Based Solid Solutions , 2003 .

[49]  A. S. Gordeichuk,et al.  Study of the effect of manganese impurities on dielectric characteristics of BSTO films , 2001 .

[50]  I. Shmyt’ko,et al.  X-ray diffraction by polydomain crystals modulated by transverse waves of atomic displacements. 1. Single-wave modulation in crystals , 2000 .

[51]  I. Shmyt’ko,et al.  X-ray diffraction in polydomain crystals modulated by transverse waves of atomic displacements. 2. Two-wave modulation of crystals , 2000 .

[52]  D. J. Johnson,et al.  Dielectric properties of BaTiO3/SrTiO3 multilayered thin films prepared by pulsed laser deposition , 1998 .

[53]  C. Rao,et al.  New directions in solid state chemistry , 1997 .

[54]  Tarakanov,et al.  Phase transitions and glasslike behavior in Sr1-xBaxTiO3. , 1996, Physical review. B, Condensed matter.

[55]  Don Berlincourt,et al.  Piezoelectric Crystals and Ceramics , 1971 .