Local subdivision of Powell-Sabin splines

We present an algorithm for local subdivision of Powell-Sabin spline surfaces. The construction of such a spline is based on a particular PS-refinement of a given triangulation. We build the new triangulation on top of this PS-refinement by applying a √3-subdivision scheme on a local part of the domain. To avoid degeneration we introduce a simple heuristic for refinement propagation, driven by a parameter. This parameter manages the trade-off between the mesh quality and the refinement localization.

[1]  Joris Windmolders Powell-Sabin splines for computer aided geometric design , 2003 .

[2]  Adhemar Bultheel,et al.  Uniform Powell--Sabin spline wavelets , 2003 .

[3]  Hendrik Speleers,et al.  Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .

[4]  Fujio Yamaguchi,et al.  Computer-Aided Geometric Design , 2002, Springer Japan.

[5]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[6]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[7]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[8]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[9]  Gerald E. Farin,et al.  Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.

[10]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[11]  Adhemar Bultheel,et al.  Powell-Sabin spline Wavelets , 2004, Int. J. Wavelets Multiresolution Inf. Process..

[12]  Nira Dyn,et al.  A Hermite Subdivision Scheme for the Evaluation of the Powell-Sabin 12-Split Element , 1999 .

[13]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[14]  Leif Kobbelt,et al.  √3-subdivision , 2000, SIGGRAPH.

[15]  Adhemar Bultheel,et al.  On the choice of the PS-triangles , 2003 .

[16]  Paul Dierckx,et al.  Surface fitting using convex Powell-Sabin splines , 1994 .

[17]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[18]  Larry L. Schumaker,et al.  Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..

[19]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[20]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[21]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[22]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..

[23]  Paul Dierckx,et al.  Subdivision of uniform Powell-Sabin splines , 1999, Comput. Aided Geom. Des..

[24]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[25]  Ulf Labsik,et al.  Interpolatory √3‐Subdivision , 2000 .

[26]  Paul Dierckx,et al.  Algorithms for surface fitting using Powell-Sabin splines , 1992 .

[27]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[28]  Adhemar Bultheel,et al.  Automatic construction of control triangles for subdivided Powell-Sabin splines , 2004, Comput. Aided Geom. Des..