Chromatin regulation at the frontier of synthetic biology

As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including 'epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication.

[1]  Albert Jeltsch,et al.  Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. , 2013, Journal of molecular biology.

[2]  R. Kornberg,et al.  Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones , 1987, Cell.

[3]  L. Mirny,et al.  Nucleosome-mediated cooperativity between transcription factors , 2009, Proceedings of the National Academy of Sciences.

[4]  Brian Houck-Loomis,et al.  Accelerated Chromatin Biochemistry Using DNA-Barcoded Nucleosome Libraries , 2014, Nature Methods.

[5]  F. Thoma,et al.  Artificial nucleosome positioning sequences tested in yeast minichromosomes: a strong rotational setting is not sufficient to position nucleosomes in vivo. , 1992, The EMBO journal.

[6]  Mark Ptashne,et al.  Telomere Looping Permits Repression “at a Distance” in Yeast , 2002, Current Biology.

[7]  A. Lustig,et al.  Tethered Sir3p nucleates silencing at telomeres and internal loci in Saccharomyces cerevisiae , 1996, Molecular and cellular biology.

[8]  C. Barbas,et al.  ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. , 2013, Trends in biotechnology.

[9]  David Shore,et al.  Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast , 1993, Cell.

[10]  R. Kingston,et al.  Cooperation between Complexes that Regulate Chromatin Structure and Transcription , 2002, Cell.

[11]  B. Cairns,et al.  The biology of chromatin remodeling complexes. , 2009, Annual review of biochemistry.

[12]  E. Bertolino,et al.  Transcriptional repression mediated by repositioning of genes to the nuclear lamina , 2008, Nature.

[13]  P. Gregory,et al.  Controlling Long-Range Genomic Interactions at a Native Locus by Targeted Tethering of a Looping Factor , 2012, Cell.

[14]  Mark Isalan,et al.  Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Danny Reinberg,et al.  Facile synthesis of site-specifically acetylated and methylated histone proteins: Reagents for evaluation of the histone code hypothesis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Kladde,et al.  Site-selective in vivo targeting of cytosine-5 DNA methylation by zinc-finger proteins. , 2003, Nucleic acids research.

[17]  D. Moazed Mechanisms for the Inheritance of Chromatin States , 2011, Cell.

[18]  U. K. Laemmli,et al.  Chromatin Boundaries in Budding Yeast The Nuclear Pore Connection , 2002, Cell.

[19]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[20]  Tony Kouzarides,et al.  Heritable Gene Repression through the Action of a Directed DNA Methyltransferase at a Chromosomal Locus* , 2008, Journal of Biological Chemistry.

[21]  M. Ramalho-Santos,et al.  Open chromatin in pluripotency and reprogramming , 2010, Nature Reviews Molecular Cell Biology.

[22]  David R. Liu,et al.  Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification , 2014, Nature Biotechnology.

[23]  Luis Aragón-Alcaide,et al.  Functional dissection of in vivo interchromosome association in Saccharomyces cerevisiae , 2000, Nature Cell Biology.

[24]  Klaas Kok,et al.  Chromatin , Gene , and RNA Regulation Towards Sustained Silencing of HER 2 / neu in Cancer By Epigenetic Editing , 2013 .

[25]  Philip D. Gregory,et al.  Reactivation of Developmentally Silenced Globin Genes by Forced Chromatin Looping , 2014, Cell.

[26]  Kun Zhang,et al.  Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. , 2014, Cell stem cell.

[27]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[28]  Martin Fussenegger,et al.  Synthetic mammalian gene circuits for biomedical applications. , 2013, Current opinion in chemical biology.

[29]  Zhike Lu,et al.  Identification of 67 Histone Marks and Histone Lysine Crotonylation as a New Type of Histone Modification , 2011, Cell.

[30]  J. Broach,et al.  UASrpg can function as a heterochromatin boundary element in yeast. , 1999, Genes & development.

[31]  Jeffrey J. Gray,et al.  Targeted DNA Methylation Using an Artificially Bisected M.HhaI Fused to Zinc Fingers , 2012, PloS one.

[32]  A. Mirsky,et al.  ACETYLATION AND METHYLATION OF HISTONES AND THEIR POSSIBLE ROLE IN THE REGULATION OF RNA SYNTHESIS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Morgan L. Maeder,et al.  CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.

[34]  G. Crabtree,et al.  Dynamics and Memory of Heterochromatin in Living Cells , 2012, Cell.

[35]  Satpal Virdee,et al.  Genetically directing ɛ-N, N-dimethyl-L-lysine in recombinant histones. , 2010, Chemistry & biology.

[36]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[37]  D. Moazed,et al.  Epigenetic inheritance uncoupled from sequence-specific recruitment , 2015, Science.

[38]  Daniel S. Yuan,et al.  Probing Nucleosome Function: A Highly Versatile Library of Synthetic Histone H3 and H4 Mutants , 2008, Cell.

[39]  Takeshi Urano,et al.  Synthetic Heterochromatin Bypasses RNAi and Centromeric Repeats to Establish Functional Centromeres , 2009, Science.

[40]  M. Mhlanga,et al.  Chromosomal Contact Permits Transcription between Coregulated Genes , 2013, Cell.

[41]  Pilar Blancafort,et al.  Epigenetic reprogramming of cancer cells via targeted DNA methylation , 2012, Epigenetics.

[42]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[43]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[44]  Dinshaw J. Patel,et al.  Multivalent engagement of chromatin modifications by linked binding modules , 2007, Nature Reviews Molecular Cell Biology.

[45]  T. Cremer,et al.  Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions , 2007, Nature Reviews Genetics.

[46]  J. P. Jost,et al.  DNA Methylation: Molecular Biology and Biological Significance , 1993 .

[47]  Timothy J. Durham,et al.  Combinatorial Patterning of Chromatin Regulators Uncovered by Genome-wide Location Analysis in Human Cells , 2011, Cell.

[48]  J. Knezetic,et al.  The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro , 1986, Cell.

[49]  Pernette J. Verschure,et al.  Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes , 2012, Nucleic acids research.

[50]  T. Cremer,et al.  Chromosome territories, nuclear architecture and gene regulation in mammalian cells , 2001, Nature Reviews Genetics.

[51]  Christopher M. Vockley,et al.  RNA-guided gene activation by CRISPR-Cas9-based transcription factors , 2013, Nature Methods.

[52]  Timothy J. Durham,et al.  Systematic analysis of chromatin state dynamics in nine human cell types , 2011, Nature.

[53]  David R. Liu,et al.  Revealing Off-Target Cleavage Specificities of Zinc Finger Nucleases by In Vitro Selection , 2011, Nature Methods.

[54]  B. Bernstein,et al.  Charting histone modifications and the functional organization of mammalian genomes , 2011, Nature Reviews Genetics.

[55]  B. Bernstein,et al.  Epigenetic Reprogramming in Cancer , 2013, Science.

[56]  C. Allis,et al.  Mutagenesis of pairwise combinations of histone amino-terminal tails reveals functional redundancy in budding yeast , 2012, Proceedings of the National Academy of Sciences.

[57]  Peggy J. Farnham,et al.  Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation , 2014, Nucleic acids research.

[58]  Nam Pho,et al.  A Chromatin-Based Mechanism for Limiting Divergent Noncoding Transcription , 2014, Cell.

[59]  Mazhar Adli,et al.  Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease , 2014, Nature Biotechnology.

[60]  J. Keith Joung,et al.  Improving CRISPR-Cas nuclease specificity using truncated guide RNAs , 2014, Nature Biotechnology.

[61]  Esther Rheinbay,et al.  A tell-tail sign of chromatin: histone mutations drive pediatric glioblastoma. , 2012, Cancer cell.

[62]  Carolyn A. Larabell,et al.  Nuclear Aggregation of Olfactory Receptor Genes Governs Their Monogenic Expression , 2012, Cell.

[63]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[64]  M. Poirier,et al.  Preparing semisynthetic and fully synthetic histones h3 and h4 to modify the nucleosome core. , 2013, Methods in molecular biology.

[65]  J. Joung,et al.  Locus-specific editing of histone modifications at endogenous enhancers using programmable TALE-LSD1 fusions , 2013, Nature Biotechnology.

[66]  Philip D. Gregory,et al.  Translating Dosage Compensation to Trisomy 21 , 2013, Nature.

[67]  Wataru Nomura,et al.  In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase. , 2007, Journal of the American Chemical Society.

[68]  Troyen A. Brennan,et al.  The special case of gene therapy pricing , 2014, Nature Biotechnology.

[69]  Eran Segal,et al.  Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast , 2012, Nature Genetics.

[70]  Ahmad S. Khalil,et al.  A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions , 2012, Cell.

[71]  Eric S. Lander,et al.  Chromatin modifying enzymes as modulators of reprogramming , 2012, Nature.

[72]  Jeffrey C. Miller,et al.  An unbiased genome-wide analysis of zinc-finger nuclease specificity , 2011, Nature Biotechnology.

[73]  Marc Bühler,et al.  Tethering RITS to a Nascent Transcript Initiates RNAi- and Heterochromatin-Dependent Gene Silencing , 2006, Cell.

[74]  A. Bird DNA methylation patterns and epigenetic memory. , 2002, Genes & development.

[75]  Bradley E. Bernstein,et al.  Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues , 2013, Cell.

[76]  Marc Ostermeier,et al.  Heterodimeric DNA methyltransferases as a platform for creating designer zinc finger methyltransferases for targeted DNA methylation in cells , 2009, Nucleic acids research.

[77]  Andrew W. Murray,et al.  Tethering Sister Centromeres to Each Other Suggests the Spindle Checkpoint Detects Stretch within the Kinetochore , 2014, PLoS genetics.

[78]  Andrew W. Murray,et al.  Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast , 2009, Nature Cell Biology.

[79]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[80]  Hans-Rudolf Hotz,et al.  Noncoding RNAs prevent spreading of a repressive histone mark , 2013, Nature Structural &Molecular Biology.

[81]  Guo-Liang Xu,et al.  Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter , 2013, Nucleic acids research.

[82]  Guido Sanguinetti,et al.  Explorer Transcription factor binding predicts histone modifications in human cell lines , 2017 .

[83]  E L Gershey,et al.  Chemical studies of histone acetylation. The distribution of epsilon-N-acetyllysine in calf thymus histones. , 1968, The Journal of biological chemistry.

[84]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[85]  B. Turner,et al.  The adjustable nucleosome: an epigenetic signaling module. , 2012, Trends in genetics : TIG.

[86]  Randall J. Platt,et al.  Optical Control of Mammalian Endogenous Transcription and Epigenetic States , 2013, Nature.

[87]  J. Chin,et al.  Genetically encoding N(epsilon)-methyl-L-lysine in recombinant histones. , 2009, Journal of the American Chemical Society.

[88]  Wouter de Laat,et al.  Variegated gene expression caused by cell-specific long-range DNA interactions , 2011, Nature Cell Biology.

[89]  Kevin Struhl,et al.  A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. , 2012, Molecular cell.

[90]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[91]  Orion D. Weiner,et al.  Illuminating cell signalling with optogenetic tools , 2014, Nature Reviews Molecular Cell Biology.

[92]  Mark Ptashne,et al.  Epigenetics: Core misconcept , 2013, Proceedings of the National Academy of Sciences.

[93]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[94]  M. Grunstein,et al.  Nucleosome loss activates yeast downstream promoters in vivo , 1988, Cell.

[95]  B. Migeon,et al.  DNA methylation: Molecular biology and biological significance , 1993 .

[96]  James J Collins,et al.  Programmable bacteria detect and record an environmental signal in the mammalian gut , 2014, Proceedings of the National Academy of Sciences.

[97]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[98]  R. Sternglanz,et al.  Perinuclear localization of chromatin facilitates transcriptional silencing , 1998, Nature.

[99]  Xin Bi,et al.  Formation of Boundaries of Transcriptionally Silent Chromatin by Nucleosome-Excluding Structures , 2004, Molecular and Cellular Biology.

[100]  Steven Henikoff,et al.  Histone modification: cause or cog? , 2011, Trends in genetics : TIG.

[101]  Martin J. Aryee,et al.  Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing , 2014, Nature Biotechnology.

[102]  R. Sternglanz,et al.  Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing , 1996, Nature.

[103]  M. Carlson,et al.  The SNF5 protein of Saccharomyces cerevisiae is a glutamine- and proline-rich transcriptional activator that affects expression of a broad spectrum of genes , 1990, Molecular and cellular biology.

[104]  James J. Collins,et al.  Using Targeted Chromatin Regulators to Engineer Combinatorial and Spatial Transcriptional Regulation , 2014, Cell.

[105]  Peter G Schultz,et al.  An Expanded Eukaryotic Genetic Code , 2003, Science.

[106]  Jason W. Chin,et al.  Designer proteins: applications of genetic code expansion in cell biology , 2012, Nature Reviews Molecular Cell Biology.

[107]  Albert Jeltsch,et al.  Targeted Methylation of the Epithelial Cell Adhesion Molecule (EpCAM) Promoter to Silence Its Expression in Ovarian Cancer Cells , 2014, PloS one.

[108]  A. Meissner Epigenetic modifications in pluripotent and differentiated cells , 2010, Nature Biotechnology.

[109]  Joel S. Bader,et al.  Synthetic chromosome arms function in yeast and generate phenotypic diversity by design , 2011, Nature.

[110]  Ricky W. Johnstone,et al.  Epigenetics in cancer: Targeting chromatin modifications , 2009, Molecular Cancer Therapeutics.

[111]  Phillip A. Sharp,et al.  Target specificity of the CRISPR-Cas9 system , 2014, Quantitative Biology.

[112]  E. Eyras,et al.  Nucleosome-driven transcription factor binding and gene regulation. , 2013, Molecular cell.

[113]  Albert Jeltsch,et al.  Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes , 2006, Nucleic acids research.

[114]  W. Bickmore,et al.  Single-Cell Dynamics of Genome-Nuclear Lamina Interactions , 2013, Cell.

[115]  D. Shore,et al.  Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast. , 1995, Genes & development.

[116]  E. O’Shea,et al.  Chromatin decouples promoter threshold from dynamic range , 2008, Nature.

[117]  R. Kornberg,et al.  Twenty-Five Years of the Nucleosome, Fundamental Particle of the Eukaryote Chromosome , 1999, Cell.

[118]  Jeffry D Sander,et al.  Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins , 2013, Nature Biotechnology.

[119]  K. Struhl Fundamentally Different Logic of Gene Regulation in Eukaryotes and Prokaryotes , 1999, Cell.

[120]  J. Keith Joung,et al.  Broad Specificity Profiling of TALENs Results in Engineered Nucleases With Improved DNA Cleavage Specificity , 2014, Nature Methods.

[121]  Pamela A Silver,et al.  Synthetic Reversal of Epigenetic Silencing* , 2011, The Journal of Biological Chemistry.

[122]  B. Schuster-Böckler,et al.  Chromatin organization is a major influence on regional mutation rates in human cancer cells , 2012, Nature.

[123]  C. Pabo,et al.  Gene-Specific Targeting of H3K9 Methylation Is Sufficient for Initiating Repression In Vivo , 2002, Current Biology.

[124]  D M Crothers,et al.  Artificial nucleosome positioning sequences. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[125]  J. Chin,et al.  A Method for Genetically Installing Site-Specific Acetylation in Recombinant Histones Defines the Effects of H3 K56 Acetylation , 2009, Molecular cell.

[126]  R. Kamakaka,et al.  RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae , 2001, The EMBO journal.

[127]  B. Fierz,et al.  Chromatin as an expansive canvas for chemical biology. , 2012, Nature chemical biology.

[128]  B. Fierz,et al.  Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function. , 2014, Biochimica et biophysica acta.

[129]  Steven J Altschuler,et al.  Genomic characterization reveals a simple histone H4 acetylation code. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[130]  R. Brent,et al.  A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor , 1985, Cell.

[131]  Mark Ptashne,et al.  Telomere looping permits gene activation by a downstream UAS in yeast , 2001, Nature.