Deterministic equivalents for certain functionals of large random matrices

Consider a $N\times n$ random matrix $ Y_n$ where the entries are independent but not identically distributed (matrices with a variance profile) Consider now a deterministic $N\times n$ matrix $A_n$ whose columns and rows are uniformly bounded for the Euclidean norm. Let $\Sigma_n=Y_n+A_n$. We prove in this article that there exists a deterministic equivalent to the empirical Stieltjes transform of the distribution of the eigenvalues of $\Sigma_n \Sigma_n^T$ which is itself the Stieltjes transform of a probability measure. This work is motivated by the context of performance evaluation of Multiple Inputs / Multiple Output (MIMO) wireless digital communication channels. As an application, we derive a deterministic equivalent to the mutual information of a wireless channel.

[1]  W. Rudin Real and complex analysis , 1968 .

[2]  M. Kreĭn,et al.  The Markov Moment Problem and Extremal Problems , 1977 .

[3]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[4]  Y. Yin Limiting spectral distribution for a class of random matrices , 1986 .

[5]  Vi︠a︡cheslav Leonidovich Girko,et al.  Theory of random determinants , 1990 .

[6]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .

[7]  J. W. Silverstein Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices , 1995 .

[8]  Boris A. Khoruzhenko,et al.  Asymptotic properties of large random matrices with independent entries , 1996 .

[9]  D. Shlyakhtenko Random Gaussian band matrices and freeness with amalgamation , 1996 .

[10]  A. Khorunzhy,et al.  Limiting eigenvalue distribution of random matrices with correlated entries , 1996 .

[11]  V. Bolotnikov On a general moment problem on the half axis , 1997 .

[12]  F. Gesztesy,et al.  On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.

[13]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[14]  J. W. Silverstein,et al.  No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .

[15]  Shlomo Shamai,et al.  Spectral Efficiency of CDMA with Random Spreading , 1999, IEEE Trans. Inf. Theory.

[16]  Anirvan M. Sengupta,et al.  Capacity of multivariate channels with multiplicative noise: I.Random matrix techniques and large-N expansions for full transfer matrices , 2000, physics/0010081.

[17]  A. Guionnet,et al.  CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .

[18]  V. Girko,et al.  Theory of stochastic canonical equations , 2001 .

[19]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[20]  Z. Bai,et al.  CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data , 2017, Statistical Papers.

[21]  P. Loubaton,et al.  The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile , 2004, math/0411333.

[22]  Philippe Loubaton,et al.  On the asymptotic performance of MIMO correlated Rician channels , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[23]  P. Loubaton,et al.  THE EMPIRICAL EIGENVALUE DISTRIBUTION OF A GRAM MATRIX: FROM INDEPENDENCE TO STATIONARITY , 2005 .

[24]  Philippe Loubaton,et al.  On the asymptotic analysis of mutual information of MIMO Rician correlated channels , 2006 .

[25]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .