Manipulating the diastereoselectivity of ortholithiation in planar chiral ferrocenes.

The sense of asymmetric ortholithiation directed by a chiral oxazoline may be inverted simply by the choice of achiral ligand. Comparison of results with a number of ferrocenyl oxazoline derivatives suggests that lithiation takes place by coordination to the oxazoline nitrogen irrespective of the ligand used.

[1]  S. You,et al.  Enantioselective synthesis of planar chiral ferrocenes via palladium-catalyzed direct coupling with arylboronic acids. , 2013, Journal of the American Chemical Society.

[2]  I. Butler The Simple Synthesis of Ferrocene Ligands from a Practitioner's Perspective , 2012 .

[3]  K. Mereiter,et al.  Ruthenium Complexes of Phosphino-Substituted Ferrocenyloxazolines in the Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones: A Comparison , 2012 .

[4]  K. K. Hii,et al.  Gold(I) Complexes of Conformationally Constricted Chiral Ferrocenyl Phosphines , 2012 .

[5]  Matthew S Sigman,et al.  Multidimensional steric parameters in the analysis of asymmetric catalytic reactions. , 2012, Nature chemistry.

[6]  C. Biot,et al.  Ferrocene-based antimalarials. , 2012, Future medicinal chemistry.

[7]  Josh Zaifman,et al.  Diastereoselective Synthesis of N‐Substituted Planar Chiral Ferrocenes Using a Proline Hydantoin‐Derived Auxiliary , 2012 .

[8]  M. Bauer,et al.  Paramagnetic palladacycles with Pd(III) centers are highly active catalysts for asymmetric aza-Claisen rearrangements. , 2012, Journal of the American Chemical Society.

[9]  Jonas F. Buergler,et al.  P-stereogenic trifluoromethyl derivatives of Josiphos: synthesis, coordination properties, and applications in asymmetric catalysis. , 2012, Chemistry.

[10]  Gérard Jaouen,et al.  Bioorganometallics: Future Trends in Drug Discovery, Analytical Chemistry, and Catalysis†,‡ , 2011 .

[11]  G. Arnott,et al.  Synthesis of inherently chiral calix[4]arenes: stereocontrol through ligand choice. , 2010, Organic Letters.

[12]  Pascual Pérez,et al.  Green solvents from glycerol. Synthesis and physico-chemical properties of alkyl glycerol ethers , 2010 .

[13]  M. M. Abd-Elzaher,et al.  On the medicinal chemistry of ferrocene , 2007 .

[14]  Antonio Ramirez,et al.  n-Butyllithium/N,N,N',N'-tetramethylethylenediamine-mediated ortholithiations of aryl oxazolines: substrate-dependent mechanisms. , 2007, Journal of the American Chemical Society.

[15]  Javier Adrio,et al.  Recent applications of chiral ferrocene ligands in asymmetric catalysis. , 2006, Angewandte Chemie.

[16]  G. Helmchen,et al.  Chiral phosphinooxazolines with a pentamethylferrocene backbone--synthesis and use as ligands in asymmetric catalysis. , 2006, The Journal of organic chemistry.

[17]  C. Bolm,et al.  Organosilanols as catalysts in asymmetric aryl transfer reactions. , 2005, Organic letters.

[18]  N. Long,et al.  The syntheses and catalytic applications of unsymmetrical ferrocene ligands. , 2004, Chemical Society reviews.

[19]  O. Sutcliffe,et al.  Planar chiral 2-ferrocenyloxazolines and 1,1 '-bis(oxazolinyl)ferrocenes-syntheses and applications in asymmetric catalysis , 2003 .

[20]  J. Clayden Enantioselective Synthesis by Lithiation to Generate Planar or Axial Chirality , 2003 .

[21]  L. Overman,et al.  Diastereoselective lithiation of (eta6-arene)dicarbonyltriphenylphosphane chromium(0) oxazoline complexes--direct preparation of enantiopure complexes having planar chiral fragments of either configuration. , 2002, Angewandte Chemie.

[22]  J. M. Saa An HF and DFT ab initio Study on the Mechanism of ortho-Directed Lithiation of Hydric and Nonhydric Aromatic Compounds Incorporating Aggregation and Discrete Solvation: The Role of N,N,N',N'-Tetramethylethane-1,2-diamine (TMEDA) in Lithiation Reactions , 2002 .

[23]  K. Ohe,et al.  Synthesis and structure of novel chiral oxazolinylferrocenes and oxazolinylferrocenylphosphines, and their rhodium(I)-complexes , 1997 .

[24]  B. Lucht,et al.  Polydentate Amine and Ether Solvates of Lithium Hexamethyldisilazide (LiHMDS): Relationship of Ligand Structure, Relative Solvation Energy, and Aggregation State , 1996 .

[25]  K. Ahn,et al.  Effects of solvent and lithiating agent on stereoselectivity in lithiation of chiral 1,1′-bis(oxazolinyl)ferrocenes , 1996 .

[26]  K. Ahn,et al.  An Efficient Diastereoselective Synthesis of Chiral Oxazolinylferrocene Compounds , 1996 .

[27]  C. Richards,et al.  Synthesis of phosphinoferrocenyloxazolines. New ligands for asymmetric catalysis , 1996 .

[28]  H. A. Latham,et al.  On the Mechanism of Oxazoline-Directed Metalations: Evidence for Nitrogen-Directed Reactions. , 1996, The Journal of organic chemistry.

[29]  H. A. Latham,et al.  Ligand effects on the stereochemistry of the metalation of chiral ferrocenyloxazolines , 1995 .

[30]  Y. Nishibayashi,et al.  Asymmetric Synthesis and Highly Diastereoselective ortho-Lithiation of Oxazolinylferrocenes , 1995 .

[31]  D. Hibbs,et al.  Synthesis of 2-[2-(Diphenylphosphino)ferrocenyl]oxazoline Ligands , 1995 .

[32]  H. A. Latham,et al.  HIGHLY DIASTEREOSELECTIVE ORTHO LITHIATIONS OF CHIRAL OXAZOLINE-SUBSTITUTED FERROCENES , 1995 .