AIR-Chem: Authentic Intelligent Robotics for Chemistry.

The new era with prosperous artificial intelligence (AI) and robotics technology is reshaping the materials discovery process in a more radical fashion. Here we present authentic intelligent robotics for chemistry (AIR-Chem), integrated with technological innovations in the AI and robotics fields, functionalized with modules including gradient descent-based optimization frameworks, multiple external field modulations, a real-time computer vision (CV) system, and automated guided vehicle (AGV) parts. AIR-Chem is portable and remotely controllable by cloud computing. AIR-Chem can learn the parametric procedures for given targets and carry on laboratory operations in standalone mode, with high reproducibility, precision, and availability for knowledge regeneration. Moreover, an improved nucleation theory of size focusing on inorganic perovskite quantum dots (IPQDs) is theoretically proposed and experimentally testified to by AIR-Chem. This work aims to boost the process of an unmanned chemistry laboratory from the synthesis of chemical materials to the analysis of physical chemical properties, and it provides a vivid demonstration for future chemistry reshaped by AI and robotics technology.

[1]  Gang Han,et al.  Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. , 2010, Nano letters.

[2]  E. Chan,et al.  Focusing nanocrystal size distributions via production control. , 2011, Nano letters.

[3]  M. Bawendi,et al.  Mechanistic insights into the formation of InP quantum dots. , 2009, Angewandte Chemie.

[4]  Christine L. Andrews,et al.  Nanoscale synthesis and affinity ranking , 2018, Nature.

[5]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[6]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[7]  Himchan Cho,et al.  Metal halide perovskite light emitters , 2016, Proceedings of the National Academy of Sciences.

[8]  B. Grocholski,et al.  Natural and engineered perovskites. , 2017, Science.

[9]  T. Florowski,et al.  Use of computer vision system (CVS) for detection of PSE pork meat obtained from m. semimembranosus , 2016 .

[10]  Andrew J. deMello,et al.  Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. , 2016, Nano letters.

[11]  L. Capitán-Vallvey,et al.  Use of the hue parameter of the hue, saturation, value color space as a quantitative analytical parameter for bitonal optical sensors. , 2010, Analytical chemistry.

[12]  Luis Fermín Capitán-Vallvey,et al.  Recent developments in computer vision-based analytical chemistry: A tutorial review. , 2015, Analytica chimica acta.

[13]  Leroy Cronin,et al.  Controlling an organic synthesis robot with machine learning to search for new reactivity , 2018, Nature.

[14]  Leroy Cronin,et al.  Networking chemical robots for reaction multitasking , 2018, Nature Communications.

[15]  Elizabeth A. Holm,et al.  Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks , 2016, JOM.

[16]  T. Smith,et al.  The C.I.E. colorimetric standards and their use , 1931 .

[17]  Yu-ran Luo,et al.  Comprehensive handbook of chemical bond energies , 2007 .

[18]  A Paul Alivisatos,et al.  Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. , 2010, Journal of the American Chemical Society.

[19]  Paul Richardson,et al.  A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow , 2018, Science.

[20]  Q. Fang,et al.  Quantitative Identification of Basic Growth Channels for Formation of Monodisperse Nanocrystals. , 2018, Journal of the American Chemical Society.

[21]  Carl Wagner,et al.  Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[22]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[23]  Takashi Taniguchi,et al.  Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices , 2018, Nature Communications.

[24]  Jay B. Patel,et al.  Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .

[25]  Richard N. Zare,et al.  Optimizing Chemical Reactions with Deep Reinforcement Learning , 2017, ACS central science.

[26]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .