AIR-Chem: Authentic Intelligent Robotics for Chemistry.
暂无分享,去创建一个
Huihuan Qian | Yi Xie | Chongfeng Liu | Jiagen Li | Yihua Lu | Shuqian Ye | Haochen Liu | Xi Zhu | Yuxiao Tu | Huihuan Qian | Yi Xie | Jiagen Li | Yuxiao Tu | Yihua Lu | Shuqian Ye | Yanheng Xu | Yanheng Xu | Haochen Liu | Xi Zhu | Chongfeng Liu
[1] Gang Han,et al. Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. , 2010, Nano letters.
[2] E. Chan,et al. Focusing nanocrystal size distributions via production control. , 2011, Nano letters.
[3] M. Bawendi,et al. Mechanistic insights into the formation of InP quantum dots. , 2009, Angewandte Chemie.
[4] Christine L. Andrews,et al. Nanoscale synthesis and affinity ranking , 2018, Nature.
[5] Louis E. Brus,et al. Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .
[6] Christopher H. Hendon,et al. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.
[7] Himchan Cho,et al. Metal halide perovskite light emitters , 2016, Proceedings of the National Academy of Sciences.
[8] B. Grocholski,et al. Natural and engineered perovskites. , 2017, Science.
[9] T. Florowski,et al. Use of computer vision system (CVS) for detection of PSE pork meat obtained from m. semimembranosus , 2016 .
[10] Andrew J. deMello,et al. Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. , 2016, Nano letters.
[11] L. Capitán-Vallvey,et al. Use of the hue parameter of the hue, saturation, value color space as a quantitative analytical parameter for bitonal optical sensors. , 2010, Analytical chemistry.
[12] Luis Fermín Capitán-Vallvey,et al. Recent developments in computer vision-based analytical chemistry: A tutorial review. , 2015, Analytica chimica acta.
[13] Leroy Cronin,et al. Controlling an organic synthesis robot with machine learning to search for new reactivity , 2018, Nature.
[14] Leroy Cronin,et al. Networking chemical robots for reaction multitasking , 2018, Nature Communications.
[15] Elizabeth A. Holm,et al. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks , 2016, JOM.
[16] T. Smith,et al. The C.I.E. colorimetric standards and their use , 1931 .
[17] Yu-ran Luo,et al. Comprehensive handbook of chemical bond energies , 2007 .
[18] A Paul Alivisatos,et al. Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. , 2010, Journal of the American Chemical Society.
[19] Paul Richardson,et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow , 2018, Science.
[20] Q. Fang,et al. Quantitative Identification of Basic Growth Channels for Formation of Monodisperse Nanocrystals. , 2018, Journal of the American Chemical Society.
[21] Carl Wagner,et al. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.
[22] Xiaogang Peng,et al. Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .
[23] Takashi Taniguchi,et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices , 2018, Nature Communications.
[24] Jay B. Patel,et al. Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .
[25] Richard N. Zare,et al. Optimizing Chemical Reactions with Deep Reinforcement Learning , 2017, ACS central science.
[26] I. Lifshitz,et al. The kinetics of precipitation from supersaturated solid solutions , 1961 .