Structural phase transition and photoluminescence properties of YF3 and YF3:Eu3+ under high pressure.

We investigate high-pressure induced phase transitions of YF3 and Eu-doped YF3 (YF3:Eu(3+)) by using the angular dispersive synchrotron X-ray diffraction technique at room temperature. It is found that the starting orthorhombic phase transforms into a new high-pressure phase which is identified as hexagonal structure in both YF3 and YF3:Eu(3+). The high-pressure structure of YF3 and YF3:Eu(3+) returned to the orthorhombic phase after release of pressure. The photoluminescence properties of YF3:Eu(3+) have also been studied under high pressure up to 25 GPa. The Eu(3+) ion luminescence lines of (5)D0→(7)F1,2,3,4 transition originating from the orthorhombic phase transform into another group of luminescence lines of hexagonal phase under high pressure, which reveals the pressure-induced structural transition of YF3:Eu(3+). The relative luminescence intensity ratio of (5)D0→(7)F2 to (5)D0→(7)F1 transitions of the Eu(3+) ions is found to increase with increasing pressure before phase transition and decrease after transition finished, indicating reducing and enhancing of the symmetry around the Eu(3+) ions, respectively.

[1]  Chih-Ming Lin,et al.  Phase transitions of pure and Ba-doped BiFeO3 under high pressure , 2012 .

[2]  Suwen Li,et al.  YF3:Ln3+ (Ln = Ce, Tb, Pr) submicrospindles: hydrothermal synthesis and luminescence properties. , 2012, Dalton transactions.

[3]  Jingjing Jiang,et al.  Facile synthesis and luminescence properties of uniform and well-dispersed YF3:Eu3+ architectures , 2012 .

[4]  Shuhong Yu,et al.  Monodisperse mesocrystals of YF3 and Ce3+/Ln3+ (Ln=Tb, Eu) co-activated YF3: shape control synthesis, luminescent properties, and biocompatibility. , 2012, Chemistry.

[5]  Jun Lin,et al.  Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres. , 2012, ACS nano.

[6]  A. K. Tyagi,et al.  Color tunable YF3: Ce3+/Ln3+ (Ln3+: Eu3+, Tb3+, Dy3+, Sm3+) luminescent system: role of sensitizer and energy transfer study , 2012 .

[7]  Jun Lin,et al.  Electrospinning Preparation and Drug‐Delivery Properties of an Up‐conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite , 2011 .

[8]  X. Bai,et al.  X‐ray diffraction of cubic Gd2O3/Er under high pressure , 2011 .

[9]  Z. Ding,et al.  High-Pressure Raman and Luminescence Study on the Phase Transition of GdVO4:Eu3+ Microcrystals , 2010 .

[10]  Y. Fujiwara,et al.  Improved luminescence properties of Eu-doped GaN light-emitting diodes grown by atmospheric-pressure organometallic vapor phase epitaxy , 2010 .

[11]  P. Bouvier,et al.  The structural behaviour of LaF(3) at high pressures. , 2010, Dalton transactions.

[12]  G. P. Das,et al.  Pressure-induced phase transition in tysonite LaF3 , 2009 .

[13]  Ping Huang,et al.  Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics , 2009 .

[14]  S. Sinogeikin,et al.  High-pressure induced phase transitions of Y2O3 and Y2O3: Eu3+ , 2009 .

[15]  John A. Capobianco,et al.  Lanthanide-doped fluoride nanoparticles: luminescence, upconversion, and biological applications , 2008 .

[16]  Bin Liu,et al.  Effects of high pressure on the luminescent properties of nanocrystalline and bulk Y2O3:Eu3+. , 2008, Journal of nanoscience and nanotechnology.

[17]  D. Klimm,et al.  The phase diagram GdF3–LuF3 , 2007, 0712.0314.

[18]  Yitai Qian,et al.  Synthesis, Characterization, and Luminescence Properties of Uniform Ln3+-Doped YF3 Nanospindles , 2007 .

[19]  E. M. Diniz,et al.  About the mechanism of the reconstructive structural phase transition underwent by tysonite LaF3 under pressure , 2007 .

[20]  Xiaoguang Li,et al.  Synthesis and Photoluminescence Properties of Truncated Octahedral Eu-Doped YF3 Submicrocrystals or Nanocrystals , 2007 .

[21]  R. L. Moreira,et al.  Infrared-spectroscopic study of orthorhombic YF3 and LuF3 single crystals , 2005 .

[22]  H. Seggern,et al.  Intrinsic luminescence in yttrium trifluoride , 2005 .

[23]  Wenjun Yang,et al.  Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors , 2004 .

[24]  D. Machon,et al.  Eu2(MoO4)3 single crystal at high pressure: Structural phase transitions and amorphization probed by fluorescence spectroscopy , 2004 .

[25]  N. Ichinose,et al.  Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals , 2004 .

[26]  M. Tonelli,et al.  Er-LiYF4 coating of Si-based substrates by pulsed laser deposition , 2004 .

[27]  T. I. Dyuzheva,et al.  High-Pressure Phase Transitions of LaF3and CeF3 , 2003 .

[28]  Jurriaan Huskens,et al.  Lanthanide-doped nanoparticles with excellent luminescent properties in organic media , 2003 .

[29]  B. Winkler,et al.  Prediction of the structure of LaF3 at high pressures , 2003 .

[30]  Jean-Luc Adam,et al.  Lanthanides in non-oxide glasses. , 2002, Chemical reviews.

[31]  T. I. Dyuzheva,et al.  Phase transition and compressibility of LaF3 under pressures up to 40 GPa , 2002 .

[32]  Z. Kollia,et al.  YF3:Nd3+, Pr3+, Gd3+ wide band gap crystals as optical materials for 157-nm photolithography , 2001 .

[33]  R. Longo,et al.  On the dependence of the luminescence intensity of rare-earth compounds with pressure: a theoretical study of Eu(TTF)32H2O in polymeric solution and crystalline phases , 1999 .

[34]  S. Mørup,et al.  Enhanced bulk modulus and reduced transition pressure in gamma-Fe2O3 nanocrystals. , 1998 .

[35]  L. C. S. D. Carmo,et al.  Grazing incidence X-ray diffraction analysis of alkali fluoride thin films for optical devices , 1998 .

[36]  E. Snitzer,et al.  Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses , 1995 .

[37]  J. R. Peterson,et al.  Effect of pressure on amorphous Eu(OH)3: A luminescence study , 1995 .

[38]  Xu,et al.  Theory of Faraday rotation and susceptibility of rare-earth trifluorides. , 1992, Physical review. B, Condensed matter.

[39]  D. Louër,et al.  Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method , 1991 .

[40]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[41]  David W. Lynch,et al.  Optical properties of single crystals of some rare-earth trifluorides, 5-34 eV , 1978 .

[42]  T. E. Hopkins,et al.  The Atomic Parameters in the Lanthanum Trifluoride Structure , 1966 .

[43]  M. Mansmann Zur Kristallstruktur von Lanthantrifluorid , 1964 .

[44]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[45]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[46]  David H. Templeton,et al.  THE CRYSTAL STRUCTURE OF YF$sub 3$ AND RELATED COMPOUNDS , 1953 .

[47]  Jinxian Wang,et al.  Synthesis and luminescence properties of YF3:Eu3+ hollow nanofibers via the combination of electrospinning with fluorination technique , 2013 .

[48]  Hirotoshi Sato,et al.  Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications , 2007 .

[49]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .