Polytopal and nonpolytopal spheres an algorithmic approach
暂无分享,去创建一个
[1] Michel Las Vergnas,et al. Orientability of matroids , 1978, J. Comb. Theory B.
[2] Ido Shemer,et al. Neighborly 6-polytopes with 10 vertices , 1987 .
[3] Günter Ewald,et al. Neuere Entwicklungen in der kombinatorischen Konvexgeometrie , 1979 .
[4] P. Kleinschmidt,et al. Sphären Mit Wenigen Ecken , 1976 .
[5] Jürgen Bokowski,et al. Altshuler's Sphere M10425 is not Polytopal , 1987, Eur. J. Comb..
[6] Michel Las Vergnas,et al. Convexity in oriented matroids , 1980, J. Comb. Theory B.
[7] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[8] Raul Cordovil,et al. Oriented Matroids of Rank Three and Arrangements of Pseudolines , 1983 .
[9] Bernd Sturmfels,et al. On the coordinatization of oriented matroids , 1986, Discret. Comput. Geom..
[10] A. Altshuler. Neighborly 4-Polytopes and Neighborly Combinatorial 3-Manifolds with Ten Vertices , 1977, Canadian Journal of Mathematics.
[11] Louis J. Billera,et al. Triangulations of oriented matroids and convex polytopes , 1984 .
[12] Richard Pollack,et al. Proof of Grünbaum's Conjecture on the Stretchability of Certain Arrangements of Pseudolines , 1980, J. Comb. Theory, Ser. A.
[13] Amos Altshuler,et al. The classification of simplicial 3-spheres with nine vertices into polytopes and nonpolytopes , 1980, Discret. Math..
[14] Peter Kleinschmidt,et al. On combinatorial and affine automorphisms of polytopes , 1984 .
[15] P. Mani,et al. Spheres with Few Vertices , 1972, J. Comb. Theory A.