Laser manipulation of a smectic liquid-crystal droplet

Abstract.The laser trapping of a smectic-A liquid-crystal micro-droplet was spatially traced during its transient into the trapped position. The lateral and angular orientation of the droplet were determined and followed in time during the axial descent of the micro-droplet into the stationary trapped position using the analysis of polarization changes of the light passed through the droplet with temporal resolution of a video refresh rate of 30 ms. The spatial resolution of 0.1-1μm has been achieved for typical laser trapping powers of 2-600 mW. The axial profile of a laser trapping force (an ellipticity of the focal spot) has been determined. The laser trapping mechanism of smectic micro-droplets is discussed in terms of minimization of a light-droplet interaction.

[1]  C. Bustamante,et al.  Ten years of tension: single-molecule DNA mechanics , 2003, Nature.

[2]  Saulius Juodkazis,et al.  Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity , 2002 .

[3]  Saulius Juodkazis,et al.  Control of the molecular alignment inside liquid-crystal droplets by use of laser tweezers. , 2005, Small.

[4]  Tsvi Tlusty,et al.  OPTICAL GRADIENT FORCES OF STRONGLY LOCALIZED FIELDS , 1998 .

[5]  Saulius Juodkazis,et al.  Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers , 2005 .

[6]  E. Furst,et al.  Applications of laser tweezers in complex fluid rheology , 2005 .

[7]  Halina Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[8]  S. Juodkazis,et al.  Photophysics and photochemistry of a laser manipulated microparticle , 1999 .

[9]  P. Bartlett,et al.  Three-dimensional force calibration of a single-beam optical gradient trap , 2002 .

[10]  Saulius Juodkazis,et al.  Rheology Measurement at Liquid-Crystal Water Interface Using Laser Tweezers , 2006 .

[11]  E. Stelzer,et al.  Trapping and tracking a local probe with a photonic force microscope , 2004 .

[12]  L. Marrucci,et al.  Light-induced rotation of dye-doped liquid crystal droplets. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  David W. M. Marr,et al.  Fabrication of linear colloidal structures for microfluidic applications , 2002 .

[14]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[15]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[16]  E. Brasselet,et al.  Light-induced chaotic rotations in nematic liquid crystals. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Iam-Choon Khoo,et al.  Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena , 1994 .

[18]  Saulius Juodkazis,et al.  Drag of a Laser Trapped Fine Particle in a Microregion , 2000 .

[19]  Norman R. Heckenberg,et al.  Optical measurement of microscopic torques , 2001 .

[20]  E. Stelzer,et al.  Photonic force microscope calibration by thermal noise analysis , 1998 .

[21]  A. Yamaguchi,et al.  Reversible phase transitions in polymer gels induced by radiation forces , 2000, Nature.

[22]  H. Misawa,et al.  Properties of a laser based on evanescent-wave amplification , 2005 .

[23]  Zhifang Lin,et al.  Radiation torque on a birefringent sphere caused by an electromagnetic wave. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[25]  Koji Ikuta,et al.  Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography , 2003 .