The extragradient algorithm with inertial effects extended to equilibrium problems
暂无分享,去创建一个
Yeol Je Cho | Poom Kumam | Auwal Bala Abubakar | Habib ur Rehman | Y. Cho | P. Kumam | H. Rehman | A. B. Abubakar | A. Abubakar | Poom Kumam
[1] G. Cohen. Auxiliary problem principle extended to variational inequalities , 1988 .
[2] Boris Polyak. Some methods of speeding up the convergence of iteration methods , 1964 .
[3] Zaki Chbani,et al. Weak and strong convergence of an inertial proximal method for solving Ky Fan minimax inequalities , 2011, Optimization Letters.
[4] H. Attouch,et al. An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping , 2001 .
[5] Pham Ky Anh,et al. Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings , 2015, Numerical Algorithms.
[6] Le Dung Muu,et al. Dual extragradient algorithms extended to equilibrium problems , 2011, Journal of Global Optimization.
[7] Q. Dong,et al. The extragradient algorithm with inertial effects for solving the variational inequality , 2016 .
[8] S. Reich,et al. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings , 1984 .
[9] Dang Van Hieu. Convergence analysis of a new algorithm for strongly pseudomontone equilibrium problems , 2017, Numerical Algorithms.
[10] Dang Van Hieu,et al. Parallel Extragradient-Proximal Methods for Split Equilibrium Problems , 2015, 1511.02474.
[11] A. Moudafi,et al. SECOND-ORDER DIFFERENTIAL PROXIMAL METHODS FOR EQUILIBRIUM PROBLEMS , 2003 .
[12] D. Hieu. Halpern subgradient extragradient method extended to equilibrium problems , 2017 .
[13] A. Moudafi. Proximal point algorithm extended to equilibrium problems , 1999 .
[14] Wataru Takahashi,et al. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces , 2007 .
[15] Pham Ky Anh,et al. Modified hybrid projection methods for finding common solutions to variational inequality problems , 2017, Comput. Optim. Appl..
[16] Anatoly Antipin. The convergence of proximal methods to fixed points of extremal mappings and estimates of their rate of convergence , 1995 .
[17] Dang Van Hieu,et al. New extragradient method for a class of equilibrium problems in Hilbert spaces , 2018 .
[18] T. D. Quoc,et al. Extragradient algorithms extended to equilibrium problems , 2008 .
[19] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[20] G. Mastroeni. On Auxiliary Principle for Equilibrium Problems , 2003 .
[21] Sjur Didrik Flåm,et al. Equilibrium programming using proximal-like algorithms , 1997, Math. Program..
[22] B. Martinet. Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .
[23] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[24] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[25] P. L. Combettes,et al. Equilibrium programming in Hilbert spaces , 2005 .
[26] Z. Opial. Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .
[27] I. Konnov. Application of the Proximal Point Method to Nonmonotone Equilibrium Problems , 2003 .
[28] G. Cohen. Auxiliary problem principle and decomposition of optimization problems , 1980 .
[29] E. U. Ofoedu,et al. Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive mapping in real Banach space , 2006 .
[30] Jan van Tiel,et al. Convex Analysis: An Introductory Text , 1984 .
[31] I. Konnov. Equilibrium Models and Variational Inequalities , 2013 .
[32] Monica Bianchi,et al. Generalized monotone bifunctions and equilibrium problems , 1996 .
[33] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .