Planar Drawings of Fixed-Mobile Bigraphs

A fixed-mobile bigraph G is a bipartite graph such that the vertices of one partition set are given with fixed positions in the plane and the mobile vertices of the other part, together with the edges, must be added to the drawing. We assume that G is planar and study the problem of finding, for a given \(k \ge 0\), a planar poly-line drawing of G with at most k bends per edge. In the most general case, we show NP-hardness. For \(k=0\) and under additional constraints on the positions of the fixed or mobile vertices, we either prove that the problem is polynomial-time solvable or prove that it belongs to NP. Finally, we present a polynomial-time testing algorithm for a certain type of “layered” 1-bend drawings.

[1]  Frank Harary,et al.  Graph Theory , 2016 .

[2]  Emilio Di Giacomo,et al.  k -Colored Point-Set Embeddability of Outerplanar Graphs , 2006, Graph Drawing.

[3]  Michael A. Bekos,et al.  Many-to-One Boundary Labeling with Backbones , 2015, J. Graph Algorithms Appl..

[4]  David A. Carrington,et al.  Empirical Evaluation of Aesthetics-based Graph Layout , 2002, Empirical Software Engineering.

[5]  Hiroshi Nagamochi,et al.  Convex drawings of graphs with non-convex boundary constraints , 2006, Discret. Appl. Math..

[6]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[7]  Stephen G. Kobourov,et al.  Colored Simultaneous Geometric Embeddings and Universal Pointsets , 2011, Algorithmica.

[8]  Alexander Wolff,et al.  Multi-sided Boundary Labeling , 2015, Algorithmica.

[9]  Kazuo Misue Anchored Map: Graph Drawing Technique to Support Network Mining , 2008, IEICE Trans. Inf. Syst..

[10]  Alexander Wolff,et al.  Boundary labeling: Models and efficient algorithms for rectangular maps , 2004, Comput. Geom..

[11]  Martin Nöllenburg,et al.  On the Readability of Boundary Labeling , 2015, Graph Drawing.

[12]  Michael T. Goodrich,et al.  Planar Drawings of Higher-Genus Graphs , 2009, J. Graph Algorithms Appl..

[13]  Maurizio Patrignani On Extending a Partial Straight-Line Drawing , 2005, Graph Drawing.

[14]  Roberto Tamassia,et al.  Handbook on Graph Drawing and Visualization , 2013 .

[15]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[16]  Michael Kaufmann,et al.  Journal of Graph Algorithms and Applications Embedding Vertices at Points: Few Bends Suffice for Planar Graphs , 2022 .

[17]  Emilio Di Giacomo,et al.  Drawing colored graphs on colored points , 2007, Theor. Comput. Sci..

[18]  Chun-Cheng Lin Crossing-free many-to-one boundary labeling with hyperleaders , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[19]  Ioannis G. Tollis,et al.  Graph Drawing , 1994, Lecture Notes in Computer Science.

[20]  J. Geelen ON HOW TO DRAW A GRAPH , 2012 .

[21]  Gabriele Neyer Map Labeling with Application to Graph Drawing , 1999, Drawing Graphs.

[22]  Martin Nöllenburg,et al.  Extending Convex Partial Drawings of Graphs , 2015, Algorithmica.

[23]  Therese C. Biedl Drawing planar partitions I: LL-drawings and LH-drawings , 1998, SCG '98.

[24]  Michael Kaufmann,et al.  Drawing Planar Partitions II: HH-Drawings , 1998, WG.

[25]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[26]  Takao Ito,et al.  Sphere Anchored Map: A Visualization Technique for Bipartite Graphs in 3D , 2009, HCI.

[27]  Michael Kaufmann,et al.  Nice Drawings for Planar Bipartite Graphs , 1997, CIAC.

[28]  Emilio Di Giacomo,et al.  Drawing Colored Graphs with Constrained Vertex Positions and Few Bends per Edge , 2007, Algorithmica.

[29]  David Eppstein,et al.  Drawing Graphs in the Plane with a Prescribed Outer Face and Polynomial Area , 2010, Graph Drawing.

[30]  Helen C. Purchase,et al.  Metrics for Graph Drawing Aesthetics , 2002, J. Vis. Lang. Comput..

[31]  Qi Zhou,et al.  Drawing Semi-bipartite Graphs in Anchor+Matrix Style , 2011, 2011 15th International Conference on Information Visualisation.

[32]  János Pach,et al.  Embedding Planar Graphs at Fixed Vertex Locations , 1998, GD.

[33]  Xavier Goaoc,et al.  Untangling a Planar Graph , 2009, Discret. Comput. Geom..

[34]  Peter Eades,et al.  Multilevel Visualization of Clustered Graphs , 1996, GD.