Chemical properties in the most distant radio galaxy

We present a deep optical spectrum of TN J0924-2201, the most distant radio galaxy at z = 5.19, obtained with FOCAS on the Subaru Telescope. We successfully detect, for the first time, the CIV1549 emission line from the narrow-line region (NLR). In addition to the emission-line fluxes of Ly alpha and CIV, we set upper limits on the NV and HeII emissions. We use these line detections and upper limits to constrain the chemical properties of TN J0924-2201. By comparing the observed emission-line flux ratios with photoionization models, we infer that the carbon-to-oxygen relative abundance is already [C/O] > -0.5 at a cosmic age of ~ 1.1 Gyr. This lower limit on [C/O] is higher than the ratio expected at the earliest phases of the galaxy chemical evolution, indicating that TN J0924-2201 has already experienced significant chemical evolution at z = 5.19.

[1]  R. Maiolino,et al.  Chemical evolution of high-redshift radio galaxies , 2009, 0905.1581.

[2]  R. Maiolino,et al.  The metallicity of the most distant quasars , 2009, 0901.0974.

[3]  S. Alighieri,et al.  Deep spectroscopy of the FUV–optical emission lines from a sample of radio galaxies at z∼ 2.5: metallicity and ionization* , 2007, 0710.5324.

[4]  P. Padovani,et al.  Evolution of chemical abundances in Seyfert galaxies , 2007, 0710.4129.

[5]  Xiaohui Fan,et al.  Gemini Near-Infrared Spectroscopy of Luminous z ∼ 6 Quasars: Chemical Abundances, Black Hole Masses, and Mg II Absorption , 2007, 0707.1663.

[6]  P. McCarthy,et al.  The Massive Hosts of Radio Galaxies across Cosmic Time , 2007, astro-ph/0703224.

[7]  C. Breuck,et al.  Lyα excess in high-redshift radio galaxies: a signature of star formation , 2006, astro-ph/0612116.

[8]  N. Bennert,et al.  Size and properties of the narrow-line region in Seyfert-1 galaxies from spatially-resolved optical spectroscopy , 2006, astro-ph/0606367.

[9]  R. Maiolino,et al.  Gas metallicity diagnostics in star-forming galaxies , 2006, astro-ph/0603580.

[10]  T. Nagao,et al.  The evolution of the broad-line region among SDSS quasars , 2005, astro-ph/0510385.

[11]  Z. Haiman,et al.  Lyα Radiation from Collapsing Protogalaxies. II. Observational Evidence for Gas Infall , 2005, astro-ph/0510409.

[12]  Z. Haiman,et al.  Lyman Alpha Radiation From Collapsing Protogalaxies II: Observational Evidence for Gas Infall , 2005 .

[13]  R. Bouwens,et al.  Clustering of Star-forming Galaxies Near a Radio Galaxy at z = 5.2 , 2005, astro-ph/0509308.

[14]  R. Maiolino,et al.  Gas metallicity in the narrow-line regions of high-redshift active galactic nuclei , 2005, astro-ph/0508652.

[15]  A. Weiss,et al.  CO (1-0) and CO (5-4) Observations of the Most Distant Known Radio Galaxy at z = 5.2 , 2005, astro-ph/0501447.

[16]  H. Rottgering,et al.  Discovery of six Lyα emitters near a radio galaxy at z ∼ 5.2 , 2004 .

[17]  P. Hall,et al.  Nitrogen-Enriched Quasars in the Sloan Digital Sky Survey First Data Release , 2004, astro-ph/0402205.

[18]  K. Aoki,et al.  Infrared Spectroscopy of 15 Radio Galaxies at 2 < z < 2.6 , 2003 .

[19]  J. Shields,et al.  Quasar Elemental Abundances at High Redshifts , 2003, astro-ph/0302494.

[20]  T. Nagao,et al.  Iron Is Not Depleted in High-Ionization Nuclear Emission-Line Regions of Active Galactic Nuclei , 2002, astro-ph/0212546.

[21]  J. Baldwin,et al.  Chemical Abundances in Broad Emission Line Regions: The “Nitrogen-loud” Quasi-Stellar Object Q0353–383 , 2002, astro-ph/0210153.

[22]  J. Baldwin,et al.  The Mass of Quasar Broad Emission Line Regions , 2002, astro-ph/0209335.

[23]  T. Nagao,et al.  Gas Metallicity of Narrow-Line Regions in Narrow-Line Seyfert 1 Galaxies and Broad-Line Seyfert 1 Galaxies , 2002, astro-ph/0204171.

[24]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[25]  Yoshiaki Taniguchi,et al.  The Narrow-Line Region of Seyfert Galaxies: Narrow-Line Seyfert 1 Galaxies versus Broad-Line Seyfert 1 Galaxies , 2001 .

[26]  A. Cimatti,et al.  Radio galaxies at z 2.5: Results from Keck spectropolarimetry , 2000, astro-ph/0010640.

[27]  L. Kewley,et al.  A Theoretical Recalibration of the Extragalactic H II Region Sequence , 2000 .

[28]  Kentaro Aoki,et al.  FOCAS: faint object camera and spectrograph for the Subaru Telescope , 2000, Astronomical Telescopes and Instrumentation.

[29]  G. Miley,et al.  A Radio Galaxy at z = 5.19 , 1999, astro-ph/9904272.

[30]  G. Ferland,et al.  Elemental Abundances in Quasistellar Objects: Star Formation and Galactic Nuclear Evolution at High Redshifts , 1999, astro-ph/9904223.

[31]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[32]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[33]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[34]  P. Padovani,et al.  Chemical Evolution of Galaxies and Quasar Metallicities , 1993 .

[35]  G. Ferland,et al.  The Chemical Evolution of QSOs and the Implications for Cosmology and Galaxy Formation , 1993 .

[36]  G. Ferland,et al.  The age and chemical evolution of high-redshift QSOs , 1992 .

[37]  J. B. Oke Faint Spectrophotometric Standard Stars , 1990 .