HIGHER COMPETITIVENESS OF SPEED-STROKE GRINDING BY USING INCREASED WHEEL SPEEDS

Production engineering faces the challenge to satisfy the increasing industrial demand for higher productivity and high requirements on workpiece quality at the same time. Furthermore, the rising environmental awareness adds additional constraints. Especially grinding processes have high relevance for industrial applications because they generate high quality surfaces and they are most effective for hard-tomachine materials. New technologies like speed-stroke grinding and high cutting speeds enable higher productivity. However, to be competitive to conventional grinding operations energy aspects have to be regarded thoroughly. This work shows how the combination of speed-stroke grinding and high speed machining can boost process performance, workpiece quality and process sustainability.

[1]  David Dornfeld,et al.  Integrating Green and Sustainability Aspects into Life Cycle Performance Evaluation , 2010 .

[2]  Günther Werner Kinematik und Mechanik des Schleifprozesses , 1971 .

[3]  Ichiro Inasaki,et al.  Modelling and Simulation of Grinding Processes , 1992 .

[4]  Fritz Klocke,et al.  Combination of Speed Stroke Grinding and High Speed Grinding with Regard to Sustainability , 2011 .

[5]  Fritz Klocke,et al.  Residual Stress Model for Speed-Stroke Grinding of Hardened Steel with CBN Grinding Wheels , 2011, Int. J. Autom. Technol..

[6]  Berend Denkena,et al.  Eco- and Energy-Efficient Grinding Processes , 2005 .

[7]  Athulan Vijayaraghavan,et al.  Automated energy monitoring of machine tools , 2010 .

[8]  Timothy G. Gutowski,et al.  An Environmental Analysis of Machining , 2004 .

[9]  F. Ferlemann,et al.  Schleifen mit höchsten Schnittgeschwindigkeiten , 1993 .

[10]  Michael F. Ashby,et al.  Materials and the Environment: Eco-informed Material Choice , 2009 .

[11]  W. Brian Rowe,et al.  High-Speed Grinding , 2014 .

[12]  Yuan Zhejun,et al.  Surface Integrity of Grinding of Bearing Steel GCr15 with CBN Wheels , 1989 .

[13]  David Dornfeld,et al.  Leveraging Manufacturing for a Sustainable Future , 2011 .

[14]  Fritz Klocke,et al.  Randzonenbeeinflussung beim Schnellhubschleifen , 2008 .

[15]  Youngsik Choi,et al.  Rolling contact fatigue life of finish hard machined surfaces: Part 1. Model development☆ , 2006 .

[16]  Fukuo Hashimoto,et al.  Industrial challenges in grinding , 2009 .

[17]  Stephen Malkin,et al.  Grinding Technology: Theory and Applications of Machining with Abrasives , 1989 .

[18]  Barbara Linke,et al.  Establishing greener products and manufacturing processes , 2011 .

[19]  Günter Kassen Beschreibung der elementaren Kinematik des Schleifvorganges , 1969 .

[20]  Fritz Klocke,et al.  FEM-Based Simulation of Temperature in Speed Stroke Grinding with 3D Transient Moving Heat Sources , 2011 .

[21]  Athulan Vijayaraghavan,et al.  Evaluating the relationship between use phase environmental impacts and manufacturing process precision , 2011 .

[22]  Ekkard Brinksmeier,et al.  Surface integrity in material removal processes: Recent advances , 2011 .

[23]  Fritz Klocke,et al.  INVESTIGATION OF TEMPERATURES AND RESIDUAL STRESSES IN SPEED STROKE GRINDING VIA FEA SIMULATION AND PRACTICAL TESTS , 2010 .