A geometric multigrid method for isogeometric compatible discretizations of the generalized Stokes and Oseen problems
暂无分享,去创建一个
[1] Raytcho D. Lazarov,et al. Geometric Multigrid for Darcy and Brinkman models of flows in highly heterogeneous porous media: A numerical study , 2016, J. Comput. Appl. Math..
[2] I. Babuska. Error-bounds for finite element method , 1971 .
[3] John A. Evans,et al. Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem , 2012 .
[4] Victor M. Calo,et al. Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system , 2015, J. Comput. Sci..
[5] Weiwei Sun,et al. Stability and Convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Time-Dependent Navier-Stokes Equations , 2007, SIAM J. Numer. Anal..
[6] John A. Evans,et al. Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. , 2017, Computer methods in applied mechanics and engineering.
[7] Jean-Luc Guermond,et al. Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale , 1999 .
[8] Thomas J. R. Hughes,et al. Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements , 2013, Numerische Mathematik.
[9] Yuri Bazilevs,et al. Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows , 2017 .
[10] Giancarlo Sangalli,et al. IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .
[11] Thomas J. R. Hughes,et al. Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .
[12] John A. Evans,et al. Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .
[13] Blanca Ayuso de Dios,et al. A Simple Preconditioner for a Discontinuous Galerkin Method for the Stokes Problem , 2012, Journal of Scientific Computing.
[14] J. Kraus,et al. Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.
[15] Youli Mao,et al. Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations , 2015, J. Num. Math..
[16] Victor M. Calo,et al. Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration , 2015, ICCS.
[17] William L. Briggs,et al. A multigrid tutorial, Second Edition , 2000 .
[18] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[19] Giancarlo Sangalli,et al. Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..
[20] Richard S. Falk,et al. Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation , 2013, SIAM J. Numer. Anal..
[21] John A. Evans,et al. Isogeometric Compatible Discretizations for Viscous Incompressible Flow , 2016 .
[22] John A. Evans,et al. Bézier projection: A unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis , 2014, 1404.7155.
[23] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[24] William L. Briggs,et al. A multigrid tutorial , 1987 .
[25] Tom Lyche,et al. Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces , 1992 .
[26] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[27] Clemens Hofreither,et al. A robust multigrid method for Isogeometric Analysis in two dimensions using boundary correction , 2015, 1512.07091.
[28] Victor M. Calo,et al. A scalable block-preconditioning strategy for divergence-conforming B-spline discretizations of the Stokes problem , 2017 .
[29] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[30] D. Braess,et al. An efficient smoother for the Stokes problem , 1997 .
[31] Thomas J. R. Hughes,et al. Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..
[32] S. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .
[33] D. Mavriplis. An assessment of linear versus non-linear multigrid methods for unstructured mesh solvers , 2001 .
[34] John A. Evans. Divergence-free B-spline discretizations for viscous incompressible flows , 2011 .
[35] Youli Mao,et al. Multiplicative Overlapping Schwarz Smoothers for Hdiv-Conforming Discontinuous Galerkin Methods for the Stokes Problem , 2016 .
[36] Clemens Hofreither,et al. Spectral Analysis of Geometric Multigrid Methods for Isogeometric Analysis , 2014, NMA.
[37] Douglas N. Arnold,et al. Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.
[38] Victorita Dolean,et al. An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .
[39] Victor M. Calo,et al. PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces , 2016, J. Comput. Sci..
[40] John A. Evans,et al. ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .
[41] Victor M. Calo,et al. Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .
[42] Trond Kvamsdal,et al. Divergence-conforming discretization for Stokes problem on locally refined meshes using LR B-splines , 2015 .
[43] Yvan Notay,et al. A Simple and Efficient Segregated Smoother for the Discrete Stokes Equations , 2014, SIAM J. Sci. Comput..
[44] C. T. Wu,et al. A two-level mesh repartitioning scheme for the displacement-based lower-order finite element methods in volumetric locking-free analyses , 2012 .
[45] Giancarlo Sangalli,et al. IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs , 2016 .
[46] R. Hiptmair. Multigrid Method for Maxwell's Equations , 1998 .
[47] Giancarlo Sangalli,et al. Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations , 2012, J. Comput. Phys..