A geometric multigrid method for isogeometric compatible discretizations of the generalized Stokes and Oseen problems

In this paper, we present a geometric multigrid methodology for the solution of matrix systems associated with isogeometric compatible discretizations of the generalized Stokes and Oseen problems. The methodology provably yields a pointwise divergence-free velocity field independent of the number of pre-smoothing steps, post-smoothing steps, grid levels, or cycles in a V-cycle implementation. The methodology relies upon Scwharz-style smoothers in conjunction with specially defined overlapping subdomains that respect the underlying topological structure of the generalized Stokes and Oseen problems. Numerical results in both two- and three-dimensions demonstrate the robustness of the methodology through the invariance of convergence rates with respect to grid resolution and flow parameters for the generalized Stokes problem as well as the generalized Oseen problem provided it is not advection-dominated.

[1]  Raytcho D. Lazarov,et al.  Geometric Multigrid for Darcy and Brinkman models of flows in highly heterogeneous porous media: A numerical study , 2016, J. Comput. Appl. Math..

[2]  I. Babuska Error-bounds for finite element method , 1971 .

[3]  John A. Evans,et al.  Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem , 2012 .

[4]  Victor M. Calo,et al.  Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system , 2015, J. Comput. Sci..

[5]  Weiwei Sun,et al.  Stability and Convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Time-Dependent Navier-Stokes Equations , 2007, SIAM J. Numer. Anal..

[6]  John A. Evans,et al.  Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. , 2017, Computer methods in applied mechanics and engineering.

[7]  Jean-Luc Guermond,et al.  Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale , 1999 .

[8]  Thomas J. R. Hughes,et al.  Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements , 2013, Numerische Mathematik.

[9]  Yuri Bazilevs,et al.  Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows , 2017 .

[10]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[11]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[12]  John A. Evans,et al.  Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .

[13]  Blanca Ayuso de Dios,et al.  A Simple Preconditioner for a Discontinuous Galerkin Method for the Stokes Problem , 2012, Journal of Scientific Computing.

[14]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[15]  Youli Mao,et al.  Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations , 2015, J. Num. Math..

[16]  Victor M. Calo,et al.  Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration , 2015, ICCS.

[17]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[18]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[19]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[20]  Richard S. Falk,et al.  Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation , 2013, SIAM J. Numer. Anal..

[21]  John A. Evans,et al.  Isogeometric Compatible Discretizations for Viscous Incompressible Flow , 2016 .

[22]  John A. Evans,et al.  Bézier projection: A unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis , 2014, 1404.7155.

[23]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[24]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[25]  Tom Lyche,et al.  Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces , 1992 .

[26]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[27]  Clemens Hofreither,et al.  A robust multigrid method for Isogeometric Analysis in two dimensions using boundary correction , 2015, 1512.07091.

[28]  Victor M. Calo,et al.  A scalable block-preconditioning strategy for divergence-conforming B-spline discretizations of the Stokes problem , 2017 .

[29]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[30]  D. Braess,et al.  An efficient smoother for the Stokes problem , 1997 .

[31]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[32]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[33]  D. Mavriplis An assessment of linear versus non-linear multigrid methods for unstructured mesh solvers , 2001 .

[34]  John A. Evans Divergence-free B-spline discretizations for viscous incompressible flows , 2011 .

[35]  Youli Mao,et al.  Multiplicative Overlapping Schwarz Smoothers for Hdiv-Conforming Discontinuous Galerkin Methods for the Stokes Problem , 2016 .

[36]  Clemens Hofreither,et al.  Spectral Analysis of Geometric Multigrid Methods for Isogeometric Analysis , 2014, NMA.

[37]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[38]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .

[39]  Victor M. Calo,et al.  PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces , 2016, J. Comput. Sci..

[40]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[41]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[42]  Trond Kvamsdal,et al.  Divergence-conforming discretization for Stokes problem on locally refined meshes using LR B-splines , 2015 .

[43]  Yvan Notay,et al.  A Simple and Efficient Segregated Smoother for the Discrete Stokes Equations , 2014, SIAM J. Sci. Comput..

[44]  C. T. Wu,et al.  A two-level mesh repartitioning scheme for the displacement-based lower-order finite element methods in volumetric locking-free analyses , 2012 .

[45]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs , 2016 .

[46]  R. Hiptmair Multigrid Method for Maxwell's Equations , 1998 .

[47]  Giancarlo Sangalli,et al.  Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations , 2012, J. Comput. Phys..