A generalized method for the segmentation of exudates from pathological retinal fundus images

[1]  The Eye in Clinical Practice , 1994 .

[2]  Ole Vilhelm Larsen,et al.  Screening for diabetic retinopathy using computer based image analysis and statistical classification , 2000, Comput. Methods Programs Biomed..

[3]  A.D. Hoover,et al.  Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response , 2000, IEEE Transactions on Medical Imaging.

[4]  Mong-Li Lee,et al.  An effective approach to detect lesions in color retinal images , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[5]  Majid Mirmehdi,et al.  Automatic Recognition of Exudative Maculopathy using Fuzzy C- Means Clustering and Neural Networks , 2001 .

[6]  Pascale Massin,et al.  A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina , 2002, IEEE Transactions on Medical Imaging.

[7]  B. Thomas,et al.  Automated identification of diabetic retinal exudates in digital colour images , 2003, The British journal of ophthalmology.

[8]  J. Boyce,et al.  Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening , 2004, Diabetic medicine : a journal of the British Diabetic Association.

[9]  P. Sharp,et al.  Automated detection and quantification of retinal exudates , 1993, Graefe's Archive for Clinical and Experimental Ophthalmology.

[10]  S. Wild,et al.  Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. , 2004, Diabetes care.

[11]  Joni-Kristian Kämäräinen,et al.  The DIARETDB1 Diabetic Retinopathy Database and Evaluation Protocol , 2007, BMVC.

[12]  B. van Ginneken,et al.  Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. , 2007, Investigative ophthalmology & visual science.

[13]  Ahmed Wasif Reza,et al.  Automatic Tracing of Optic Disc and Exudates from Color Fundus Images Using Fixed and Variable Thresholds , 2009, Journal of Medical Systems.

[14]  Yusuf Ali,et al.  Diabetic retinopathy: a review , 2008 .

[15]  Bunyarit Uyyanonvara,et al.  Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods , 2008, Comput. Medical Imaging Graph..

[16]  Roberto Hornero,et al.  Retinal image analysis based on mixture models to detect hard exudates , 2009, Medical Image Anal..

[17]  Bunyarit Uyyanonvara,et al.  Automatic Exudate Detection from Non-dilated Diabetic Retinopathy Retinal Images Using Fuzzy C-means Clustering , 2009, Sensors.

[18]  Roberto Hornero,et al.  Neural network based detection of hard exudates in retinal images , 2009, Comput. Methods Programs Biomed..

[19]  Sven J. Dickinson,et al.  TurboPixels: Fast Superpixels Using Geometric Flows , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Ahmed Wasif Reza,et al.  Diagnosis of Diabetic Retinopathy: Automatic Extraction of Optic Disc and Exudates from Retinal Images using Marker-controlled Watershed Transformation , 2009, Journal of Medical Systems.

[21]  Jacob Scharcanski,et al.  A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images , 2010, Comput. Medical Imaging Graph..

[22]  Hamzah Arof,et al.  Automated Identification of Exudates and Optic Disc Based on Inverse Surface Thresholding , 2012, Journal of Medical Systems.

[23]  Nahed H. Solouma,et al.  Accurate detection of blood vessels improves the detection of exudates in color fundus images , 2012, Comput. Methods Programs Biomed..

[24]  Kenneth W. Tobin,et al.  Exudate-based diabetic macular edema detection in fundus images using publicly available datasets , 2012, Medical Image Anal..

[25]  Bálint Antal,et al.  Automatic exudate detection with improved Naïve-bayes classifier , 2012, 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS).

[26]  Guy Cazuguel,et al.  TeleOphta: Machine learning and image processing methods for teleophthalmology , 2013 .

[27]  Jaskirat Kaur,et al.  Exudates Segmentation in Retinal Fundus Images for the Detection of Diabetic Retinopathy , 2014 .

[28]  Gwénolé Quellec,et al.  Exudate detection in color retinal images for mass screening of diabetic retinopathy , 2014, Medical Image Anal..

[29]  G. G. Rajput,et al.  Detection and Classification of Exudates Using K-Means Clustering in Color Retinal Images , 2014, 2014 Fifth International Conference on Signal and Image Processing.

[30]  Guy Cazuguel,et al.  FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE , 2014 .

[31]  Salim Lahmiri,et al.  Automated detection of circinate exudates in retina digital images using empirical mode decomposition and the entropy and uniformity of the intrinsic mode functions , 2014, Biomedizinische Technik. Biomedical engineering.

[32]  Sunil Kumar,et al.  Wavelet-Based Computer-Aided Detection of Bright Lesions in Retinal Fundus Images , 2014, CompIMAGE.

[33]  K. Somasundaram,et al.  Diagnosing and Ranking Retinopathy Disease Level Using Diabetic Fundus Image Recuperation Approach , 2015, TheScientificWorldJournal.

[34]  Desire Sidibé,et al.  Discrimination of retinal images containing bright lesions using sparse coded features and SVM , 2015, Comput. Biol. Medicine.

[35]  Deepti Mittal,et al.  Automated detection and segmentation of drusen in retinal fundus images , 2015, Comput. Electr. Eng..

[36]  J. Dheeba,et al.  Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System , 2015, Journal of Digital Imaging.

[37]  K Wisaeng,et al.  Automatic detection of exudates in retinal images based on threshold moving average models , 2015, Biofizika.

[38]  Ramesh Kumar Sunkaria,et al.  Designing of Computer Aided Diagnostic System for the Identification of Exudates in Retinal Fundus Images , 2015 .

[39]  Jaskirat Kaur,et al.  Segmentation and Measurement of Exudates in Fundus Images of the Retina for Detection of Retinal Disease , 2015 .

[40]  S. Kumar,et al.  Automated lesion detectors in retinal fundus images , 2015, Comput. Biol. Medicine.

[41]  Deepti Mittal,et al.  A generalized method for the detection of vascular structure in pathological retinal images , 2017 .

[42]  Jie Chen,et al.  A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images , 2017, Comput. Medical Imaging Graph..