Multidrug‐Resistant Transport Proteins in Yeast: Complete Inventory and Phylogenetic Characterization of Yeast Open Reading Frames within the Major Facilitator Superfamily

Screening of the complete genome sequence from the yeast Saccharomyces cerevisiae reveals that 28 open reading frames (ORFs) are homologous to each other and to established bacterial members of the drug‐resistant subfamily of the major facilitator superfamily. The phylogenesis of these protein sequences shows that they fall into three major clusters. Cluster I contains 12 ORFs, cluster II contains ten ORFs and cluster III contains six ORFs. Hydropathy analyses indicate that in clusters II and III ORFs, 14 transmembrane spans are predicted whereas only 12 transmembrane spans are predicted in cluster I ORFs.

[1]  S. Karlin,et al.  Applications and statistics for multiple high-scoring segments in molecular sequences. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[2]  K. Lewis,et al.  Multidrug resistance pumps in bacteria: variations on a theme. , 1994, Trends in biochemical sciences.

[3]  S. Schuldiner,et al.  The pharmacological profile of the vesicular monoamine transporter resembles that of multidrug transporters , 1995, FEBS letters.

[4]  M. Saier,et al.  Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport , 1994, Molecular microbiology.

[5]  M. Yamazaki,et al.  Analysis of the nucleotide sequence of chromosome VI from Saccharomyces cerevisiae , 1995, Nature Genetics.

[6]  M. Maiden,et al.  Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[7]  C. Sander,et al.  Yeast chromosome III: new gene functions. , 1994, The EMBO journal.

[8]  M. Hofnung,et al.  Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. , 1995, Research in microbiology.

[9]  A. Goffeau,et al.  Identification and Characterization of SNQ2, a New Multidrug ATP Binding Cassette Transporter of the Yeast Plasma Membrane (*) , 1995, The Journal of Biological Chemistry.

[10]  S. Altschul,et al.  Issues in searching molecular sequence databases , 1994, Nature Genetics.

[11]  B. Dujon,et al.  The complete DNA sequence of yeast chromosome III , 1992, Nature.

[12]  A. Goffeau,et al.  The proton-translocating ATPase of the fungal plasma membrane. , 1981, Biochimica et biophysica acta.

[13]  B. André,et al.  An overview of membrane transport proteins in Saccharomyces cerevisiae , 1995, Yeast.

[14]  C. Sensen,et al.  Complete DNA sequence of yeast chromosome XI , 1994, Nature.

[15]  A. Goffeau,et al.  Solubilization and characterization of the overexpressed PDR5 multidrug resistance nucleotide triphosphatase of yeast. , 1994, The Journal of biological chemistry.

[16]  Manuel G. Claros,et al.  TopPred II: an improved software for membrane protein structure predictions , 1994, Comput. Appl. Biosci..

[17]  Jonathan A. Cooper,et al.  Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. , 1994, Science.

[18]  C DeLisi,et al.  The detection and classification of membrane-spanning proteins. , 1985, Biochimica et biophysica acta.

[19]  A. Goffeau,et al.  Yeast multidrug resistance: The PDR network , 1995, Journal of bioenergetics and biomembranes.

[20]  P. Slonimski,et al.  A data‐base of chromosome III of Saccharomyces cerevisiae , 1993, Yeast.

[21]  M. Aigle,et al.  Complete DNA sequence of yeast chromosome II. , 1994, The EMBO journal.

[22]  J. Becker,et al.  Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene , 1994, Antimicrobial Agents and Chemotherapy.

[23]  I. Pastan,et al.  Biochemistry of multidrug resistance mediated by the multidrug transporter. , 1993, Annual review of biochemistry.

[24]  M. Saier,et al.  A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. , 1993, Trends in biochemical sciences.

[25]  S. Baldwin,et al.  Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. , 1993, Biochimica et biophysica acta.

[26]  I. Paulsen,et al.  Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes--an analysis. , 1993, Gene.

[27]  M. O. Dayhoff,et al.  Establishing homologies in protein sequences. , 1983, Methods in enzymology.

[28]  Y. Suzuki,et al.  Isolation and characterization of SGE1: a yeast gene that partially suppresses the gal11 mutation in multiple copies. , 1993, Genetics.

[29]  A. Janulaitis,et al.  Cloning and sequence analysis of a Candida maltosa gene which confers resistance to cycloheximide. , 1992, Gene.

[30]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[31]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[32]  A. Goffeau,et al.  Phylogenetic classification of the major superfamily of membrane transport facilitators, as deduced from yeast genome sequencing , 1995, FEBS letters.

[33]  I. Paulsen,et al.  The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs , 1996, Molecular microbiology.