Small Grid Embeddings of 3-Polytopes

We introduce an algorithm that embeds a given 3-connected planar graph as a convex 3-polytope with integer coordinates. The size of the coordinates is bounded by O(27.55n)=O(188n). If the graph contains a triangle we can bound the integer coordinates by O(24.82n). If the graph contains a quadrilateral we can bound the integer coordinates by O(25.46n). The crucial part of the algorithm is to find a convex plane embedding whose edges can be weighted such that the sum of the weighted edges, seen as vectors, cancel at every point. It is well known that this can be guaranteed for the interior vertices by applying a technique of Tutte. We show how to extend Tutte’s ideas to construct a plane embedding where the weighted vector sums cancel also on the vertices of the boundary face.

[1]  Stefan Felsner,et al.  Convex Drawings of 3-Connected Plane Graphs , 2004, SODA '05.

[2]  H. Hahn Encyklopädie der mathematischen Wissenschaften , 1928 .

[3]  Günter Rote,et al.  Straightening polygonal arcs and convexifying polygonal cycles , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[4]  Marek Chrobak,et al.  Convex drawings of graphs in two and three dimensions (preliminary version) , 1996, SCG '96.

[5]  Günter Rote,et al.  Blowing Up Polygonal Linkages , 2003 .

[6]  Igor Pak,et al.  A Quantitative Steinitz Theorem for Plane Triangulations , 2013, ArXiv.

[7]  Ludwig Stammler,et al.  Beiträge zur Algebra und Geometrie , 1971 .

[8]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[9]  Ş. Burcu Bozkurt Upper bounds for the number of spanning trees of graphs , 2012 .

[10]  D. Rose,et al.  Generalized nested dissection , 1977 .

[11]  Craig Gotsman,et al.  Discrete one-forms on meshes and applications to 3D mesh parameterization , 2006, Comput. Aided Geom. Des..

[12]  Walter Whiteley,et al.  Plane Self Stresses and projected Polyhedra I: The Basic Pattem , 1993 .

[13]  Michael T. Goodrich,et al.  On the Complexity of Optimization Problems for 3-dimensional Convex Polyhedra and Decision Trees , 1997, Comput. Geom..

[14]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[15]  W. T. Tutte Convex Representations of Graphs , 1960 .

[16]  Florian Zickfeld,et al.  Geometric and Combinatorial Structures on Graphs , 2008 .

[17]  Stefan Felsner,et al.  Convex Drawings of 3-Connected Plane Graphs , 2005, SODA '05.

[18]  David W. Lewis,et al.  Matrix theory , 1991 .

[19]  Kevin Buchin,et al.  On the Number of Spanning Trees a Planar Graph Can Have , 2009, ESA.

[20]  Jovisa D. Zunic,et al.  On the Maximal Number of Edges of Convex Digital Polygons Included into an m x m -Grid , 1995, J. Comb. Theory A.

[21]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[22]  Oded Schramm,et al.  Existence and uniqueness of packings with specified combinatorics , 1991 .

[23]  André Schulz Drawing 3-Polytopes with Good Vertex Resolution , 2011, J. Graph Algorithms Appl..

[24]  George E. Andrews,et al.  A LOWER BOUND FOR THE VOLUME OF STRICTLY CONVEX BODIES WITH MANY BOUNDARY LATTICE POINTS , 1963 .

[25]  Ares Ribó Mor Realization and counting problems for planar structures , 2006 .

[26]  Gnter Rote,et al.  The number of spanning trees in a planar graph , 2005 .

[27]  Ôôöøøøøóò Óó,et al.  Strictly Convex Drawings of Planar Graphs , 2022 .

[28]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[29]  Günter Rote,et al.  Embedding 3-polytopes on a small grid , 2007, SCG '07.

[30]  K. Zumbühl,et al.  Lifting planar graphs to realize integral 3-polytopes and topics in pseudo-triangulations , 2008 .

[31]  John E. Hopcroft,et al.  A paradigm for robust geometric algorithms , 1989, Algorithmica.

[32]  George E. Andrews An asymptotic expression for the number of solutions of a general class of Diophantine equations , 1961 .

[33]  M. Lewin A generalization of the matrix-tree theorem , 1982 .

[34]  James Clerk Maxwell,et al.  I.—On Reciprocal Figures, Frames, and Diagrams of Forces , 2022, Transactions of the Royal Society of Edinburgh.

[35]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[36]  W. T. Tutte How to Draw a Graph , 1963 .

[37]  Gunter M. Ziegler,et al.  Realization spaces of 4-polytopes are universal , 1995 .

[38]  Peter Eades,et al.  Drawing Stressed Planar Graphs in Three Dimensions , 1995, GD.

[39]  W. Whiteley Motions and stresses of projected polyhedra , 1982 .

[40]  Jürgen Richter-Gebert Realization Spaces of Polytopes , 1996 .