Velocity-independent time-domain seismic imaging using local event slopes

By estimating local event slopes in prestack seismic reflection data, it is possible to accomplish all common time-domain imaging tasks, from normal moveout to prestack time migration, without the need to estimate seismic velocities or any other attributes. Local slopes contain complete information about the reflection geometry. Once they are estimated, seismic velocities and all other moveout parameters turn into data attributes and are directly mappable from the prestack data domain into the time-migrated image domain. I develop an analytical theory, which defines the transformation from data and local slopes to the image space for different time-domain imaging operators. Computational experiments with synthetic and field data examples confirm theoretical expectations and demonstrate practical effectiveness of the proposed method.

[1]  P. Podvin,et al.  Velocity Macromodel Estimation By Stereotomography , 1997 .

[2]  J. Claerbout Earth Soundings Analysis: Processing Versus Inversion , 1992 .

[3]  P. Hubral TIME MIGRATION—SOME RAY THEORETICAL ASPECTS* , 1977 .

[4]  Sergey Fomel,et al.  Local seismic attributes , 2007 .

[5]  Biaolong Hua,et al.  Parsimonious 2-D poststack Kirchhoff depth migration , 2001 .

[6]  R. J. Castle,et al.  A theory of normal moveout , 1994 .

[7]  T. Hertweck,et al.  A Seismic Reflection Imaging Workflow Based On the Common-Reflection-Surface (CRS) Stack: Theoretical Background And Case Study , 2004 .

[8]  J. Claerbout,et al.  Robust moveout without velocity picking , 2004 .

[9]  A. Berkhout,et al.  Velocity independent seismic imaging , 2001 .

[10]  Boris Gurevich,et al.  Application of multifocusing method for subsurface imaging , 1999 .

[11]  Gilles Lambaré,et al.  Stereotomography: a semi‐automatic approach for velocity macromodel estimation , 2004 .

[12]  Paul Sava,et al.  Angle-domain common-image gathers by wavefield continuation methods , 2003 .

[13]  Paul L. Stoffa,et al.  Direct mapping of seismic data to the domain of intercept time and ray parameter—A plane‐wave decomposition , 1981 .

[14]  Sergey Fomel Angle-domain seismic imaging and the oriented wave equation , 2003 .

[15]  Mathias Alerini,et al.  Stereotomographic Picking In Practice , 2004 .

[16]  C. H. Dix SEISMIC VELOCITIES FROM SURFACE MEASUREMENTS , 1955 .

[17]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[18]  Gilles Lambaré,et al.  Velocity macro‐model estimation from seismic reflection data by stereotomography , 1998 .

[19]  Frank Adler,et al.  Robust estimation of dense 3D stacking velocities from automated picking , 1999 .

[20]  Gilles Lambaré,et al.  Practical aspects and applications of 2D stereotomography , 2003 .

[21]  F. Rieber,et al.  A NEW REFLECTION SYSTEM WITH CONTROLLED DIRECTIONAL SENSITIVITY , 1936 .

[22]  S. Fomel,et al.  Shaping regularization in geophysical-estimation problems , 2007 .

[23]  R. Siliqi,et al.  Anelliptic Time Processing Based On a Shifted Hyperbola Approach , 2000 .

[24]  Sergey Fomel,et al.  Velocity continuation and the anatomy of residual prestack time migration , 2003 .

[25]  H. Douma A hybrid formulation of map migration and wave-equation-based migration using curvelets , 2022 .

[26]  Charles H. Sword Tomographic Determination of Interval Velocities From Picked Reflection Seismic Data , 1986 .

[27]  Eric de Bazelaire,et al.  Normal Moveout Revisited: Inhomogeneous Media And Curved Interfaces , 1986 .

[28]  Felix J. Herrmann,et al.  Optimal Seismic Imaging With Curvelets , 2003 .

[29]  Philippe Herrmann,et al.  High-density moveout parameter fields V and η. Part one: Simultaneous automatic picking , 2003 .