Combinatorics of generalized q-Euler numbers

New enumerating functions for the Euler numbers are considered. Several of the relevant generating functions appear in connection to entries in Ramanujan's Lost Notebook. The results presented here are, in part, a response to a conjecture made by M.E.H. Ismail and C. Zhang about the symmetry of polynomials in Ramanujan's expansion for a generalization of the Rogers-Ramanujan series. Related generating functions appear in the work of H. Prodinger and L.L. Cristea in their study of geometrically distributed random variables. An elementary combinatorial interpretation for each of these enumerating functions is given in terms of a related set of statistics.

[1]  Désiré André,et al.  Sur les permutations alternées , 1881 .

[2]  M. Ismail,et al.  Zeros of entire functions and a problem of Ramanujan , 2007 .

[3]  L. Carlitz,et al.  Enumeration of up-down sequences , 1973, Discret. Math..

[4]  H. Prodinger Combinatorics of geometrically distributed random variables: new q-tangent and q-secant numbers , 1999, math/9910096.

[5]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[6]  L. Carlitz Enumeration of up-down permutations by number of rises , 1973 .

[7]  q-Enumeration of up-down words by number of rises , 2009 .

[8]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[9]  L. Carlitz,et al.  Enumeration of up-down permutations by upper records , 1975 .

[10]  H. Prodinger A continued fraction expansion for a q-tangent function: An elementary proof , 2008, 0805.1549.

[11]  I. Gessel,et al.  Divisibility properties of the $q$-tangent numbers , 1978 .

[12]  L. Carlitz Permutations, Sequences and Special Functions , 1975 .

[13]  Tim Huber Hadamard products for generalized Rogers-Ramanujan series , 2008, J. Approx. Theory.

[14]  F. H. Jackson A Basic-sine and cosine with symbolical solutions of certain differential equations , 1903 .

[15]  Robin J. Chapman,et al.  A Conjecture of Stanley on Alternating Permutations , 2007, Electron. J. Comb..

[16]  George E. Andrews,et al.  Congruences for the q-secant Numbers , 1980, Eur. J. Comb..

[17]  Markus Fulmek A continued fraction expansion for a q-tangent function , 2000, math/0008180.

[18]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[19]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[20]  Richard P. Stanley Alternating permutations and symmetric functions , 2007, J. Comb. Theory, Ser. A.

[21]  George E. Andrews,et al.  The lost notebook and other unpublished papers , 1988 .

[22]  Richard P. Stanley,et al.  Binomial Posets, Möbius Inversion, and Permutation Enumeration , 1976, J. Comb. Theory A.

[23]  George E. Andrews,et al.  Ramanujan's Lost Notebook: Part I , 2005 .

[24]  Don Rawlings,et al.  Generalized Worpitzky Identities with Applications to Permutation Enumeration , 1981, Eur. J. Comb..

[25]  Rodica Simion,et al.  Combinatorial Statistics on Alternating Permutations , 1998 .

[26]  D. Foata Further divisibility properties of the -tangent numbers , 1981 .

[27]  Tim Huber,et al.  Zeros of generalized Rogers-Ramanujan series: Asymptotic and combinatorial properties , 2010, J. Approx. Theory.

[28]  Volker Strehl,et al.  Alternating permutations and modified Ghandi-polynomials , 1979, Discret. Math..

[29]  Jiang Zeng,et al.  Un autre q-analogue des nombres d’Euler , 2001 .