On the mechanical stability and out-of-plane dynamics of a travelling panel submerged in axially flowing ideal fluid : a study into paper production in mathematical terms

Jeronen, Juha On the mechanical stability and out-of-plane dynamics of a travelling panel submerged in axially flowing ideal fluid: a study into paper production in mathematical terms Jyväskylä: University of Jyväskylä, 2011, 243 p. (Jyväskylä Studies in Computing ISSN 1456-5390; 148) ISBN 978-951-39-4595-4 (nid.) ISBN 978-951-39-4596-1 (PDF) Finnish summary Diss. In this study, we consider the dynamical behaviour and stability of a moving panel submerged in two-dimensional potential flow in a papermaking context. The steady-state critical velocity of the system is determined in terms of problem parameters. Dynamical response is predicted via direct temporal simulations, and the eigenfrequency spectrum is analyzed, obtaining both the subcritical free vibration behaviour and the initial postbuckling response. By using an analytical functional solution for the reaction force of the surrounding air, the fluidstructure interaction model is reduced to one integro-differential equation. This makes it possible to work with this fluid-structure interaction problem efficiently with modest computational resources, while improving on the accuracy when compared to the classical technique of added-mass approximation. Discretization is performed by the Fourier–Galerkin method, and results from the numerical computations are visualized. The predictions of the model are successfully validated against existing results. It is found that the model works especially well for long, narrow web spans. To accomodate readers from various technical backgrounds, the topics are reported in a detailed, ground-up manner. After a general introduction, the elastic stability properties of the classical moving string and those of the damped moving string are analyzed in detail as an introduction to this class of problems. Finally, to facilitate eigenfrequency spectrum analysis for the main problem, techniques are developed for overcoming the two main practical challenges: producing continuous curves out of randomly ordered eigenvalue data, and classifying physically meaningful solutions versus numerical artifacts.

[1]  M. Kurki,et al.  On the limit velocity and buckling phenomena of axially moving orthotropic membranes and plates , 2011 .

[2]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[3]  Oleg N. Kirillov,et al.  Paradoxes of dissipation‐induced destabilization or who opened Whitney's umbrella? , 2009, 0906.1650.

[4]  C. D. Mote Stability of Systems Transporting Accelerating Axially Moving Materials , 1975 .

[5]  Jiang Qian,et al.  A numerical method for quadratic eigenvalue problems of gyroscopic systems , 2007 .

[6]  W. F. Ames,et al.  Vibrations of a moving threadline , 1963 .

[7]  Rui Wu Methods for space-time parameter estimation in DS-CDMA arrays , 2006 .

[8]  Michel Quintard,et al.  Transport in ordered and disordered porous media I: The cellular average and the use of weighting functions , 1994 .

[9]  Tayfun E. Tezduyar,et al.  Fluid-structure interaction modeling of complex parachute designs with the space-time finite element techniques , 2007 .

[10]  T. Tuovinen,et al.  Analysis of stability of axially moving orthotropic membranes and plates with a linear non-homogeneous tension profile , 2011 .

[11]  Liqun Chen Analysis and Control of Transverse Vibrations of Axially Moving Strings , 2005 .

[12]  R. Sack Transverse oscillations in travelling strings , 1954 .

[13]  Michel Quintard,et al.  Transport in ordered and disordered porous media IV: Computer generated porous media for three-dimensional systems , 1994 .

[14]  Gary A. Baum,et al.  Determination of all nine orthotropic elastic constants for machine-made paper , 1979 .

[15]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[16]  R. G. Casten,et al.  Basic Concepts Underlying Singular Perturbation Techniques , 1972 .

[17]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[18]  Johan Hoffman,et al.  Resolution of d’Alembert’s Paradox , 2010 .

[19]  U. Lee,et al.  Modal spectral element formulation for axially moving plates subjected to in-plane axial tension , 2003 .

[20]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[21]  Giuseppe Lugano,et al.  Digital community design : exploring the role of mobile social software in the process of digital convergence , 2010 .

[22]  C. D. Mote,et al.  On the energetics of axially moving continua , 1989 .

[23]  M Deschamps,et al.  Ultrasonic waves propagation in absorbing thin plates application to paper characterization. , 2000, Ultrasonics.

[24]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[25]  A. Galip Ulsoy,et al.  Vibration of Wide Band Saw Blades , 1982 .

[26]  Jerrold E. Marsden,et al.  On destabilizing effects of two fundamental non-conservative forces , 2006 .

[27]  C. Eloy,et al.  Flutter of a rectangular plate , 2007 .

[28]  Ari Hirvonen,et al.  Enterprise architecture planning in practice : the perspectives of information and communication technology service provider and end-user , 2004 .

[29]  A. A. Renshaw,et al.  Local Stability of Gyroscopic Systems Near Vanishing Eigenvalues , 1996 .

[30]  K. Isogai,et al.  A THEORETICAL STUDY OF PAPER FLUTTER , 2002 .

[31]  G. A. Tokaty,et al.  A History and Philosophy of Fluid Mechanics , 1971 .

[32]  S. Kaneko,et al.  Linear and nonlinear analyses of sheet flutter induced by leakage flow , 2005 .

[33]  Usik Lee,et al.  Dynamics of an Axially Moving Viscoelastic Beam Subject to Axial Tension , 2005 .

[34]  Mikael A. Langthjem,et al.  Physical mechanism of the destabilizing effect of damping in continuous non-conservative dissipative systems , 2007 .

[35]  Yufeng Xing,et al.  New exact solutions for free vibrations of thin orthotropic rectangular plates , 2009 .

[36]  C. D. Mote,et al.  EIGENVALUE SOLUTIONS PREDICTING THE WRINKLING OF RECTANGULAR WEBS UNDER NON-LINEARLY DISTRIBUTED EDGE LOADING , 1996 .

[37]  K. Marynowski Non-linear dynamic analysis of an axialy moving viscoelastic beam , 2002 .

[38]  A. Pramila,et al.  Nonlinear vibration of axially moving membrane by finite element method , 1997 .

[39]  A. Pramila,et al.  Natural frequencies of a submerged axially moving band , 1987 .

[40]  Nikolay Banichuk,et al.  On the instability of an axially moving elastic plate , 2010 .

[41]  H. Fernholz Boundary Layer Theory , 2001 .

[42]  C. D. Mote,et al.  Equilibrium Displacement and Stress Distribution in a Two-Dimensional, Axially Moving Web Under Transverse Loading , 1995 .

[43]  Pekka Neittaanmki,et al.  Structural Optimization with Uncertainties , 2009 .

[44]  W. Mcginley,et al.  Identification of dynamic properties of plate-like structures by using a continuum model , 1995 .

[45]  E. Ventsel,et al.  Thin Plates and Shells: Theory: Analysis, and Applications , 2001 .

[46]  Michel Quintard,et al.  Transport in ordered and disordered porous media II: Generalized volume averaging , 1994 .

[47]  Robert G. Parker,et al.  Supercritical speed stability of the trivial equilibrium of an axially-moving string on an elastic foundation , 1999 .

[48]  C. D. Mote,et al.  Vibration Control of an Axially Moving String by Boundary Control , 1996 .

[49]  S. Chonan Steady state response of an axially moving strip subjected to a stationary lateral load , 1986 .

[50]  Earl H. Dowell,et al.  SUBSONIC FLUTTER OF PANELS ON CONTINUOUS ELASTIC FOUNDATIONS - EXPERIMENT AND THEORY , 1962 .

[51]  Nikolay Banichuk,et al.  Static instability analysis for travelling membranes and plates interacting with axially moving ideal fluid , 2010 .

[52]  E. Tadmor Stability analysis of finite-difference, pseudospectral and Fourier-Galerkin approximations for time-dependent problems , 1987 .

[53]  Kari Aho,et al.  Enhancing system level performance of third generation cellular networks through VoIP and MBMS services , 2010 .

[54]  C. D. Mote,et al.  Response and Discretization Methods for Axially Moving Materials , 1991 .

[55]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[56]  S. Orszag,et al.  Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. , 1999 .

[57]  J. Lighthill,et al.  An Informal Introduction to Theoretical Fluid Mechanics , 1986 .

[58]  Eero Wallenius Control and management of multi-access wireless networks , 2005 .

[59]  C. D. Mote,et al.  Stability of non-conservative linear discrete gyroscopic systems , 1991 .

[60]  Michel Quintard,et al.  Transport in ordered and disordered porous media V: Geometrical results for two-dimensional systems , 1994 .

[61]  M. P. Paı¨doussis Some unresolved issues in fluid-structure interactions , 2005 .

[62]  Earl H. Dowell,et al.  On the aeroelastic instability of two-dimensional panels in uniform incompressible flow , 1976 .

[63]  A. Pramila,et al.  Interaction of an axially moving band and surrounding fluid by boundary layer theory , 2006 .

[64]  M. Païdoussis The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across Applied Mechanics , 2008 .

[65]  H. Hosaka,et al.  Self-excited vibrations of a flexible disk rotating on an air film above a flat surface , 1992 .

[66]  A. Raman,et al.  Aeroelastic Stability of Axially Moving Webs Coupled to Incompressible Flows , 2010 .

[67]  Sami Kollanus Tarkastuskäytänteiden kehittäminen ohjelmistoja tuottavissa organisaatioissa , 2009 .

[68]  V. G. Piskunov,et al.  Evolution of the Theory of Laminated Plates and Shells , 2002 .

[69]  L Prandtl,et al.  Motion of fluids with very little viscosity , 1928 .

[70]  Michel Quintard,et al.  Transport in ordered and disordered porous media III: Closure and comparison between theory and experiment , 1994 .

[71]  Jintai Chung,et al.  Dynamic characteristics of the out-of-plane vibration for an axially moving membrane , 2005 .

[72]  H. Ashley,et al.  Aerodynamics of Wings and Bodies , 1965 .

[73]  Yuefang Wang,et al.  Eigenvalue and stability analysis for transverse vibrations of axially moving strings based on Hamiltonian dynamics , 2005 .

[74]  C. D. Mote,et al.  Dynamic Stability of Axially Moving Materals , 1972 .

[75]  Christo I. Christov,et al.  Fourier-Galerkin method for 2D solitons of Boussinesq equation , 2007, Math. Comput. Simul..

[76]  K. Nakai,et al.  Evaluation of in-plane orthotropic elastic constants of paper and paperboard , 2022 .

[77]  Krzysztof Marynowski Dynamics of the Axially Moving Orthotropic Web , 2008 .

[78]  Mikko J. Alava,et al.  The physics of paper , 2006 .

[79]  Hans Sagan,et al.  Boundary and Eigenvalue Problems in Mathematical Physics , 1961 .

[80]  Shenghua Liu,et al.  Interacting with intelligent agents : key issues in agent-based decision support system design , 2010 .

[81]  Exact Solutions > Linear Partial Differential Equations > Second-Order Hyperbolic Partial Differential Equations > Telegraph Equation , 2004 .

[82]  Olivier Doaré,et al.  Dissipation effect on local and global stability of fluid-conveying pipes , 2010 .

[83]  P. Neittaanmäki,et al.  Dynamic Behaviour of an Axially Moving Plate Undergoing Small Cylindrical Deformation Submerged in Axially Flowing Ideal Fluid , 2011 .

[84]  Andrei D. Polyanin,et al.  Partial differential equation , 2008, Scholarpedia.

[85]  Klaus Gersten,et al.  Boundary-Layer Theory - 8th Revised and Enlarged Edition , 2000 .

[86]  L. I. Sedov,et al.  A course in continuum mechanics , 1971 .

[87]  Pekka Neittaanmäki,et al.  Reliable Methods for Computer Simulation: Error Control and a Posteriori Estimates , 2004 .

[88]  A. Pramila,et al.  Sheet flutter and the interaction between sheet and air , 1986 .

[89]  Paula Savolainen,et al.  Why do software development projects fail? : emphasising the supplier's perspective and the project start-up , 2011 .

[90]  C. D. Mote,et al.  Classical Vibration Analysis of Axially Moving Continua , 1990 .

[91]  A. Simpson Transverse Modes and Frequencies of Beams Translating between Fixed end Supports , 1973 .

[92]  Robert G. Parker,et al.  On the Eigenvalues and Critical Speed Stability of Gyroscopic Continua , 1998 .

[93]  Ryszard Sygulski,et al.  Stability of membrane in low subsonic flow , 2007 .

[94]  Isadore Silberman,et al.  PLANETARY WAVES IN THE ATMOSPHERE , 1954 .

[95]  Y. B. Chang,et al.  INTERACTION OF FLUTTERING WEBS WITH SURROUNDING AIR , 1991 .

[96]  M. P. Païdoussis,et al.  Stability of Rectangular Plates With Free Side-Edges in Two-Dimensional Inviscid Channel Flow , 2000 .

[97]  S. Whitaker Flow in porous media I: A theoretical derivation of Darcy's law , 1986 .

[98]  Stephen Whitaker,et al.  Flow in porous media II: The governing equations for immiscible, two-phase flow , 1986 .

[99]  R. Weinstock Calculus of Variations: with Applications to Physics and Engineering , 1952 .

[100]  Nikolay Banichuk,et al.  Static instability analysis of an elastic band travelling in the gravitational field , 2011 .

[101]  Stephen Whitaker,et al.  ADVANCES IN THEORY OF FLUID MOTION IN POROUS MEDIA , 1969 .

[102]  V. V. Bolotin,et al.  Nonconservative problems of the theory of elastic stability , 1963 .

[103]  Eric John Ruggiero Modeling and Control of SPIDER Satellite Components , 2005 .

[104]  Oono,et al.  Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[105]  Jian Zhang QoS- and revenue-aware resource allocation mechanisms in multiclass IP networks , 2004 .

[106]  Xiaodong Wang Instability analysis of some fluid–structure interaction problems , 2003 .

[107]  P. M. Moretti,et al.  Flow-Induced Vibration of Free Edges of Thin Films , 2002 .

[108]  M. Amabili,et al.  Damping Effect of Winding on the Lateral Vibrations of Axially Moving Tapes , 2000 .

[109]  M. Huber Einige Anwendungen der Biegungstheorie orthotroper Platten , 2022 .

[110]  Pekka Neittaanmäki,et al.  Finite Element Approximation of Variational Problems and Applications , 1990 .

[111]  Nikolay V. Kuznetsov Stability and oscillation of dynamical systems : theory and applications , 2008 .

[112]  Bo Liu,et al.  New exact solutions for free vibrations of rectangular thin plates by symplectic dual method , 2009 .

[113]  A. G. Ulsoy,et al.  Analysis of bandsaw vibration. , 1980 .

[114]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[115]  D. J. Gorman,et al.  Free Vibration Analysis of Rectangular Plates , 1982 .

[116]  Virpi Lyytikäinen Contextual and structural metadata in enterprise document management , 2004 .

[117]  Martin Goland,et al.  Principles of aeroelasticity , 1975 .

[118]  Silvio Levy,et al.  The Forgotten Revolution: How Science Was Born in 300 BC and Why it Had to Be Reborn , 2004 .

[119]  B. Launder,et al.  Lectures in mathematical models of turbulence , 1972 .

[120]  Artem Kulachenko,et al.  Modelling the dynamical behaviour of a paper web. Part II , 2007 .

[121]  C. D. Mote Divergence buckling of an edge-loaded axially moving band , 1968 .

[122]  Willard L. Miranker,et al.  The Wave Equation in a Medium in Motion , 1960, IBM J. Res. Dev..

[123]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[124]  Designing ICT for mothers : user psychological approach , 2006 .

[125]  C. D. Mote,et al.  Free, Periodic, Nonlinear Oscillation of an Axially Moving Strip , 1969 .

[126]  R. Kouhia Computational techniques for the non-linear analysis of structures , 2004 .

[127]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[128]  P. Bradshaw,et al.  Turbulence Models and Their Application in Hydraulics. By W. RODI. International Association for Hydraulic Research, Delft, 1980. Paperback US $15. , 1983, Journal of Fluid Mechanics.

[129]  Robert G. Parker,et al.  Approximate eigensolutions of axially moving beams with small flexural stiffness , 2004 .

[130]  W. Ames,et al.  Non-linear vibration of a traveling threadline , 1968 .

[131]  E. Niemi,et al.  FEM‐analysis of transverse vibrations of an axially moving membrane immersed in ideal fluid , 1987 .

[132]  C. D. Mote Dynamic stability of an axially moving band , 1968 .

[133]  A. Galip Ulsoy,et al.  Principal developments in band saw vibration and stability research , 1978, Holz als Roh- und Werkstoff.

[134]  C. D. Mote,et al.  Vibration coupling in continuous belt and band systems , 1985 .

[135]  C. C. Lin Stability and vibration characteristics of axially moving plates , 1997 .

[136]  Zheying Zhang,et al.  Model component reuse : conceptual foundations and application in the metamodeling-based systems analysis and design environment , 2004 .

[137]  C. D. Mote,et al.  Current Research on the Vibration and Stability of Axially-Moving Materials , 1988 .

[138]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a cross parachute: Numerical simulation , 2001 .

[139]  Yuncheng You,et al.  Some second-order vibrating systems cannot tolerate small time delays in their damping , 1991 .