Mining Latent Features from Reviews and Ratings for Item Recommendation

In this paper, we propose a probabilistic model based on collaborative filtering and extended topic model for item recommendation. It allows us to extract the item features or user preferences which are represented with meaningful phrases. We develop efficient inference algorithms using Gibbs-EM sampling for posterior inference of our model. We evaluate the model on Amazon review dataset and the experiment results show that our model outperforms state-of-the-art methods on the task of recommendation.

[1]  Jure Leskovec,et al.  Learning Attitudes and Attributes from Multi-aspect Reviews , 2012, 2012 IEEE 12th International Conference on Data Mining.

[2]  George Casella,et al.  Implementations of the Monte Carlo EM Algorithm , 2001 .

[3]  Hanna M. Wallach,et al.  Topic modeling: beyond bag-of-words , 2006, ICML.

[4]  G. C. Wei,et al.  A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .

[5]  Gregor Heinrich Parameter estimation for text analysis , 2009 .

[6]  Nathan Srebro,et al.  Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.

[7]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[8]  Patrick Seemann,et al.  Matrix Factorization Techniques for Recommender Systems , 2014 .

[9]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[10]  Clare R. Voss,et al.  Scalable Topical Phrase Mining from Text Corpora , 2014, Proc. VLDB Endow..

[11]  Lior Rokach,et al.  Introduction to Recommender Systems Handbook , 2011, Recommender Systems Handbook.

[12]  Jure Leskovec,et al.  Hidden factors and hidden topics: understanding rating dimensions with review text , 2013, RecSys.

[13]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Yehuda Koren,et al.  Advances in Collaborative Filtering , 2011, Recommender Systems Handbook.

[15]  Guokun Lai,et al.  Explicit factor models for explainable recommendation based on phrase-level sentiment analysis , 2014, SIGIR.